【即插即用】ECA注意力机制(附源码)

原文地址:https://arxiv.org/abs/1910.03151v4#/

1. 核心思想

ECANet的核心思想是在卷积操作中引入通道注意力机制,以提升特征表示的能力。通道注意力机制旨在自适应地调整通道特征的权重,从而使网络能够更好地关注重要特征并抑制不重要特征。通过这种机制,ECANet有效地增强了网络的表征能力,同时避免了增加过多的参数和计算成本。

2. 通道注意力模块

通道注意力模块是ECANet的核心组成部分,其目标是根据通道之间的关系自适应地调整通道特征的权重。该模块首先对特征图进行全局平均池化,然后通过一组全连接层生成通道注意力权重,最后将这些权重应用于输入特征图的每个通道,实现了不同通道的加权组合,并通过缩放因子进行归一化。

3. 嵌入式通道注意力模块

嵌入式通道注意力模块是ECANet的扩展部分,将通道注意力机制嵌入到卷积层中,从而在卷积操作中引入通道关系。具体而言,在卷积操作中,将输入特征图划分为多个子特征图,然后在每个子特征图上进行卷积操作,并在操作过程中引入通道注意力。最后,将这些子特征图合并,得到最终的输出特征图。这种设计有效地减少了计算成本,并保持了网络的高效性。

通过以上介绍,可以看出,ECANet通过引入通道注意力机制,有效地提升了网络在图像处理任务中的性能,并在保持高效性的同时,增强了特征表示的能力,具有广泛的应用前景。


Pytorch版本源码:

import torch
from torch import nn
import math

class ECAAttention(nn.Module):
    # 初始化, in_channel代表特征图的输入通道数, b和gama代表公式中的两个系数
    def __init__(self, in_channel, b=1, gama=2):
        # 继承父类初始化
        super(ECAAttention, self).__init__()

        # 根据输入通道数自适应调整卷积核大小
        kernel_size = int(abs((math.log(in_channel, 2) + b) / gama))
        # 如果卷积核大小是奇数,就使用它
        if kernel_size % 2:
            kernel_size = kernel_size
        # 如果卷积核大小是偶数,就把它变成奇数
        else:
            kernel_size = kernel_size

        # 卷积时,为例保证卷积前后的size不变,需要0填充的数量
        padding = kernel_size // 2

        # 全局平均池化,输出的特征图的宽高=1
        self.avg_pool = nn.AdaptiveAvgPool2d(output_size=1)
        # 1D卷积,输入和输出通道数都=1,卷积核大小是自适应的
        self.conv = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=kernel_size,
                              bias=False, padding=padding)
        # sigmoid激活函数,权值归一化
        self.sigmoid = nn.Sigmoid()

    # 前向传播
    def forward(self, inputs):
        # 获得输入图像的shape
        b, c, h, w = inputs.shape

        # 全局平均池化 [b,c,h,w]==>[b,c,1,1]
        x = self.avg_pool(inputs)
        # 维度调整,变成序列形式 [b,c,1,1]==>[b,1,c]
        x = x.view([b, 1, c])
        # 1D卷积 [b,1,c]==>[b,1,c]
        x = self.conv(x)
        # 权值归一化
        x = self.sigmoid(x)
        # 维度调整 [b,1,c]==>[b,c,1,1]
        x = x.view([b, c, 1, 1])

        # 将输入特征图和通道权重相乘[b,c,h,w]*[b,c,1,1]==>[b,c,h,w]
        outputs = x * inputs
        return outputs


if __name__ == '__main__':
    input = torch.randn(2, 2, 512, 512)
    eca = ECAAttention(in_channel=input.size(1))
    output = eca(input)
    print(output.shape)

CA和ECA都是通道注意力机制,用于增强模型对通道之间关系的建模能力。 CA(Channel Attention)通道注意力机制主要通过计算通道之间的相似度来确定不同通道之间的权重,然后将不同通道的特征进行加权求和。具体地,对于输入的特征矩阵 $X\in R^{C\times H\times W}$,CA通道注意力机制的计算过程如下: 1. 计算不同通道之间的相似度:首先将输入特征矩阵 $X$ 沿着 $H$ 和 $W$ 两个维度进行平均池化,得到一个大小为 $C\times 1 \times 1$ 的矩阵 $f(X)$。然后将 $f(X)$ 分别与一个大小为 $1\times C \times 1 \times 1$ 的可学习权重张量 $W_1$ 和 $1\times 1 \times C \times 1$ 的可学习权重张量 $W_2$ 进行卷积操作,得到两个大小为 $1\times C \times 1 \times 1$ 的矩阵 $W_1 f(X)$ 和 $W_2 f(X)$。最后将它们相加,再通过一个激活函数(如Sigmoid)得到一个大小为 $1\times C \times 1 \times 1$ 的权重矩阵 $A$,表示不同通道之间的相似度。 2. 加权求和:将输入特征矩阵 $X$ 和权重矩阵 $A$ 进行相乘,并沿着通道维度进行求和,得到一个大小为 $1\times 1 \times H \times W$ 的特征矩阵 $Y$,表示经过通道注意力机制加权后的特征。 ECA(Efficient Channel Attention)通道注意力机制是对CA的改进,主要考虑到在计算通道相似度时,同时考虑全局和局部信息可以提高模型性能。具体地,ECA通道注意力机制的计算过程如下: 1. 计算全局信息:首先将输入特征矩阵 $X$ 沿着 $H$ 和 $W$ 两个维度进行平均池化,得到一个大小为 $C\times 1 \times 1$ 的矩阵 $f(X)$。然后将 $f(X)$ 分别与一个大小为 $1\times C \times 1 \times 1$ 的可学习权重张量 $W_1$ 和 $1\times 1 \times C \times 1$ 的可学习权重张量 $W_2$ 进行卷积操作,得到两个大小为 $1\times C \times 1 \times 1$ 的矩阵 $W_1 f(X)$ 和 $W_2 f(X)$。最后将它们相加,再通过一个激活函数(如Sigmoid)得到一个大小为 $1\times C \times 1 \times 1$ 的权重矩阵 $A_g$,表示全局信息。 2. 计算局部信息:为了考虑局部信息,可以使用一维卷积操作对输入特征矩阵 $X$ 沿着通道维度进行卷积,得到一个大小为 $C\times H \times W$ 的特征矩阵 $X'$。然后将 $X'$ 沿着 $H$ 和 $W$ 两个维度分别进行最大池化和平均池化,并将两个池化结果拼接成一个大小为 $C\times 2 \times 1 \times 1$ 的矩阵 $f(X')$。然后将 $f(X')$ 分别与一个大小为 $1\times C \times 1 \times 1$ 的可学习权重张量 $W_3$ 和 $1\times 1 \times C \times 1$ 的可学习权重张量 $W_4$ 进行卷积操作,得到两个大小为 $1\times C \times 1 \times 1$ 的矩阵 $W_3 f(X')$ 和 $W_4 f(X')$。最后将它们相加,再通过一个激活函数(如Sigmoid)得到一个大小为 $1\times C \times 1 \times 1$ 的权重矩阵 $A_l$,表示局部信息。 3. 组合全局和局部信息:将全局信息权重矩阵 $A_g$ 和局部信息权重矩阵 $A_l$ 相加,并进行归一化,得到一个大小为 $1\times C \times 1 \times 1$ 的权重矩阵 $A$,表示全局和局部信息的组合。然后将输入特征矩阵 $X$ 和权重矩阵 $A$ 进行相乘,并沿着通道维度进行求和,得到一个大小为 $1\times 1 \times H \times W$ 的特征矩阵 $Y$,表示经过ECA通道注意力机制加权后的特征。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值