凸优化学习:PART3凸函数的扩展——拟凸函数和对数凸函数

拟凸函数(Quasi Convex function)

拟凸函数是非凸优化中较容易的一种

定义及例子

函数 f : R n → R f:\R^n\rightarrow \R f:RnR称为拟凸函数(或者单峰函数),如果其定义域及所有下水平集
S α = { x ∈ d o m f ∣ f ( x ) ≤ α } , α ∈ R S_{\alpha}=\{x\in\bold{dom}f|f(x)\leq \alpha\},\alpha\in \R Sα={xdomff(x)α},αR
都是凸集

f f f是拟凹函数,如果 − f -f f是拟凸函数,即每个上水平集 { x ∣ f ( x ) ≥ α } \{x|f(x)\geq \alpha\} {xf(x)α}都是凸集。

若某函数既是拟凸函数又是拟凹函数,其为拟线性函数。函数为拟线性函数,如果其定义域和所有水平集 { x ∣ f ( x ) = α } \{x|f(x)= \alpha\} {xf(x)=α}都是凸集。

image-20230205180734683

e x e^x ex为拟线性函数:

image-20230205183423261
  • 凸函数与拟凸函数的关系

    凸函数一定是拟凸函数,但是拟凸函数不一定是凸函数(甚至有可能是凹函数)

  • 拟凸函数的另一个名字:单模态函数

    不一定是凸问题,但是是比较简单的问题。但理论分析比较困难。


拟凸函数的例子:

image-20230205183935664 image-20230205191203601

关于凸函数的定义:

f : R n → R f:\R^n\rightarrow \R f:RnR为凸,则 d o m f \bold{dom}f domf为凸, ∀ x , y ∈ d o m f , 0 ≤ θ ≤ 1 , θ f ( x ) + ( 1 − θ ) f ( y ) ≥ f ( θ x + ( 1 − θ ) y ) \forall x,y\in\bold{dom}f,0\leq \theta\leq 1,\theta f(x)+(1-\theta)f(y)\geq f(\theta x+(1-\theta)y) x,ydomf,0θ1,θf(x)+(1θ)f(y)f(θx+(1θ)y)

将上述的定义转换应用到拟凸函数:
max ⁡ { f ( x ) , f ( y ) } ≥ f ( θ x + ( 1 − θ ) y ) \max\{f(x),f(y)\}\geq f(\theta x +(1-\theta)y) max{f(x),f(y)}f(θx+(1θ)y)
从定义中也可以得知:一个函数如果是凸函数,那么一定是拟凸函数。

image-20230205191107587

拟凸函数的例子:

image-20230205191259553

证明方式: α − \alpha- α下水平集是否是凸集。

是一个子空间,所以一定是一个凸集。

image-20230205192326737

该集合是一个多面体,故是一个凸集。


拟凸优化问题例子

例:向量的零范数 x ∈ R n , f ( x ) = ∣ ∣ x ∣ ∣ 0 x\in \R^n,f(x)=||x||_0 xRnf(x)=∣∣x0

image-20230205201432403

问题: min ⁡ ∣ ∣ x ∣ ∣ 0 \min ||x||_0 min∣∣x0

s.t. x ∈ C x\in C xC

  • 方式1:转换
image-20230205201946258
  • 方式2:逼近

    逼近的另一种方式

    image-20230205202242663
可微拟凸函数
一阶条件

设函数 f : R n → R f:\R^n\rightarrow \R f:RnR可微,则 f f f是拟凸函数的充要条件是, d o m f \bold{dom}f domf是凸集,且对于任意的 x , y ∈ d o m f x,y\in\bold{dom}f x,ydomf有:
f ( y ) ≤ f ( x ) ⇒ ∇ f ( x ) T ( y − x ) ≤ 0 f(y)\leq f(x)\Rightarrow \nabla f(x)^T(y-x)\leq 0 f(y)f(x)f(x)T(yx)0
证明:

  • 考虑最简单的一维情况:

    先证明 ⇒ \Rightarrow

    已知 f ( x ) f(x) f(x)是拟凸函数,那么 max ⁡ { f ( x ) , f ( y ) } ≥ f ( θ x + ( 1 − θ ) y ) \max\{f(x),f(y)\}\geq f(\theta x+(1-\theta)y) max{f(x),f(y)}f(θx+(1θ)y)

    f ( y ) ≤ f ( x ) f(y)\leq f(x) f(y)f(x),那么 f ( x ) ≥ f ( θ x + ( 1 − θ ) y ) f(x)\geq f(\theta x+(1-\theta)y) f(x)f(θx+(1θ)y),则有 f ( θ x + ( 1 − θ ) y ) − f ( x ) ≤ 0 f(\theta x+(1-\theta)y)-f(x)\leq 0 f(θx+(1θ)y)f(x)0,等价于 f ( θ x + ( 1 − θ ) y ) − f ( θ x + ( 1 − θ ) x ) ≤ 0 f(\theta x+(1-\theta)y)-f(\theta x+(1-\theta)x)\leq 0 f(θx+(1θ)y)f(θx+(1θ)x)0,进一步等价为:
    f ( θ x + ( 1 − θ ) y ) − f ( θ x + ( 1 − θ ) x ) ( 1 − θ ) ( y − x ) ( 1 − θ ) ( y − x ) ≤ 0 \frac{f(\theta x+(1-\theta)y)-f(\theta x+(1-\theta)x)}{(1-\theta)(y-x)}(1-\theta)(y-x)\leq 0 (1θ)(yx)f(θx+(1θ)y)f(θx+(1θ)x)(1θ)(yx)0
    θ → 1 \theta\rightarrow 1 θ1时,上式等价于:
    f ′ ( x ) ( y − x ) ≤ 0 f'(x)(y-x)\leq 0 f(x)(yx)0
    再证明 ⇐ \Leftarrow

    ∀ x , y ∈ d o m f , \forall x,y\in\bold{dom}f, x,ydomf均有 f ( y ) ≤ f ( x ) f(y)\leq f(x) f(y)f(x) ∇ T f ( x ) ( y − x ) ≤ 0 \nabla ^Tf(x)(y-x)\leq 0 Tf(x)(yx)0
    KaTeX parse error: Expected 'EOF', got '&' at position 2: &̲ \max\{f(y),f(x…

    上述证明不够合理,只能保证在 θ → 1 \theta\rightarrow 1 θ1时成立,下面使用另一种证明方式:反证 f ( z ) > f ( x ) f(z)>f(x) f(z)>f(x)的情况不存在

image-20230206130021366 image-20230206130603344
image-20230206112401997

拟凸函数一阶偏导为零可能的情况:

image-20230206112639586 image-20230206102204357
二阶条件

凸函数的二阶条件:

image-20230206112729631

拟凸函数的二阶条件:

d o m f \bold{dom}f domf为凸集, ∀ y ∈ R n \forall y\in \R^n yRn,且$y^T\nabla f(x)\geq 0\Rightarrow yT\nabla2f(x)y> 0 $

image-20230206115517908

对数凸函数与对数凹函数

定义

f : R n → R f:\R^n\rightarrow \R f:RnR对数凹,如果 x ∈ d o m f x\in\bold{dom}f xdomf f ( x ) > 0 f(x)>0 f(x)>0 log ⁡ f \log f logf是凹函数。

f : R n → R f:\R^n\rightarrow \R f:RnR对数凸,如果 x ∈ d o m f x\in\bold{dom}f xdomf f ( x ) > 0 f(x)>0 f(x)>0 log ⁡ f \log f logf是凸函数。

  • 意义:很多问题都是乘积的形式,取对数后问题会变得简单。

  • 二者与凹函数和凸函数有什么关系?

    • f ( x ) f(x) f(x) log ⁡   c o n v e x \log \ convex log convex,则 f f f为凸函数

      e log ⁡ f e^{\log f} elogf是凸函数,所以 f f f是凸函数。

    • f ( x ) f(x) f(x) c o n v a v e , f > 0 convave,f>0 convave,f>0,则 log ⁡ f \log f logf为对数凹

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Blanche117

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值