拟凸函数定义等价证明

拟凸函数定义等价证明

在这里插入图片描述

        定义2 若 dom f = Z ⊂ R n \text{dom} f=Z\subset R^n domf=ZRn 为凸集,且对任意的 α \alpha α,其下水平集 S α = { x ∈ Z ∣ f ( x ) ≤ α } S_\alpha=\{x\in Z |f(x) \le \alpha\} Sα={xZf(x)α}都是凸集,则 f f f为拟凸函数。

定义1 ⇒ \Rightarrow 定义2(由 f ( x ) f(x) f(x)满足定义一推出 f ( x ) f(x) f(x)满足定义2)

证:设 S α = { x ∈ Z ∣ f ( x ) ≤ α } S_\alpha=\{x\in Z |f(x) \le \alpha\} Sα={xZf(x)α},令 x , y ∈ S α x,y\in S_\alpha x,ySα,即 x , y ∈ Z x,y\in Z x,yZ f ( x ) ≤ α , f ( y ) ≤ α f(x)\le\alpha,f(y)\le\alpha f(x)α,f(y)α。由定义1知:对于任意 0 ≤ λ ≤ 1 0\le\lambda\le1 0λ1,有 λ x 1 + ( 1 − λ ) x 2 ∈ Z \lambda x_1+(1-\lambda)x_2\in Z λx1+(1λ)x2Z f ( λ x 1 + ( 1 − λ ) x 2 ) ≤ m a x { f ( x 1 ) , f ( x 2 ) } ≤ α f(\lambda x_1+(1-\lambda)x_2)\le max\{f(x_1),f(x_2)\}\le\alpha f(λx1+(1λ)x2)max{f(x1),f(x2)}α,即 λ x 1 + ( 1 − λ ) x 2 ∈ S α \lambda x_1+(1-\lambda)x_2\in S_\alpha λx1+(1λ)x2Sα。故 S α S_\alpha Sα为凸集, f ( x ) f(x) f(x)满足定义2。

定义2 ⇒ \Rightarrow 定义1(由 f ( x ) f(x) f(x)满足定义2推出 f ( x ) f(x) f(x)满足定义1)

证:令 x , y ∈ Z , α = m a x { f ( x ) , f ( y ) } x,y\in Z, \alpha=max\{f(x),f(y)\} x,yZ,α=max{f(x),f(y)},即 x , y ∈ S α x,y\in S_\alpha x,ySα。由定义1知对于任意 λ \lambda λ λ x 1 + ( 1 − λ ) x 2 ∈ S α \lambda x_1+(1-\lambda)x_2\in S_\alpha λx1+(1λ)x2Sα, 则 f ( λ x + ( 1 − λ ) y ) ≤ α = m a x { f ( x ) , f ( y ) } f(\lambda x+(1-\lambda)y)\le \alpha=max\{f(x),f(y)\} f(λx+(1λ)y)α=max{f(x),f(y)},则 f ( x ) f(x) f(x)满足定义1.

  • 9
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值