单目深度估计---- MiDaS DPT与Depth-Anything比较

  • DP T论文说法:DPT在性能上显著优于MiDaS。‌

DPT(‌Dense Predictive Transformers)‌与MiDaS都是深度学习模型,‌用于密集预测任务,‌如单目深度估计和语义分割。‌根据最新的研究和对比实验,‌DPT在多个方面展现出了对MiDaS的优势。‌

  1. 性能对比:‌DPT-Hybrid与MiDaS相比,‌平均相对改进率超过了23%,‌而DPT-Large的平均相对改进率则超过了28%。‌这一性能提升在多个数据集上得到了一致的验证,‌包括使用迄今为止最大的单目深度估计训练集进行的测试1。‌

  2. 数据集适应性:‌DPT不仅在大型数据集上表现优异,‌即使是在较小的数据集上,‌通过微调,‌DPT仍然能够保持其高性能。‌例如,‌在ADE20K数据集上的训练和在Pascal数据集上的微调都显示了DPT的强大性能1。‌

  3. 全局与局部性能:‌DPT能够在保持全局一致性的同时,‌更好地重建细节,‌这在具有挑战的区域(‌如较大的均匀区域)‌中尤为明显。‌这表明DPT在处理复杂场景和保持图像细节方面具有优势1。‌

综上所述,‌DPT在性能、‌适应不同数据集的能力以及处理图像细节的能力方面都展现出了对MiDaS的优势。‌这使得DPT成为当前密集预测任务中的优选模型之一12。‌

  • Depth Anything论文结论:在多个方面优于DPT。‌

Depth Anyt

### DPT 单目深度估计复现教程 #### 1. 环境准备 为了成功运行DPT模型,需先设置合适的开发环境。推荐使用Anaconda来管理Python虚拟环境。 ```bash conda create -n dpt_env python=3.8 conda activate dpt_env pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 pip install timm opencv-python matplotlib scikit-image tensorboardX hydra-core omegaconf einops tqdm ``` 上述命令安装了PyTorch及相关依赖库,以及用于视觉处理和其他辅助功能的包[^2]。 #### 2. 获取预训练权重代码仓库 访问官方GitHub页面下载最新版本的源码,并获取预训练好的模型参数文件。 ```bash git clone https://github.com/intel-isl/DPT.git cd DPT wget http://files.is.tue.mpg.de/is/datasets/dpt/DPT_Hybrid-ef441691.pt ``` 此部分操作确保能够获得最新的算法实现细节和支持材料[^4]。 #### 3. 数据集准备 对于单目深度估计任务而言,通常会利用公开的数据集如NYUv2、KITTI等作为测试对象。这些数据集中包含了大量带有真实世界标签(即距离信息)的照片样本。如果想要评估模型性能,则需要按照特定格式整理好输入图片路径及其对应的ground truth文件夹结构[^3]。 #### 4. 推理过程说明 完成以上准备工作之后就可以调用`inference.py`脚本来执行推理流程: ```python import os from pathlib import Path from utils.utils import read_image, write_depth from models.depth_estimation.dpt_model_runner import run_dpt def main(): input_path = "path/to/input/image" output_directory = "./output" model_weights = str(Path(__file__).parent / 'weights' / 'DPT_Hybrid-ef441691.pt') img = read_image(input_path) prediction = run_dpt(img, model_weights=model_weights) save_name = f"{Path(output_directory).stem}.png" write_depth(os.path.join(output_directory, save_name), prediction) if __name__ == "__main__": main() ``` 这段简单的Python程序展示了如何加载一张待测图像并将其传递给已训练完毕的DPT网络进行预测;最后将得到的结果保存下来以便后续查看分析[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值