线性代数-矩阵

矩阵

相关定义

  1. 对角矩阵:除了主对角线上的元素不为0,其他元素都为零的矩阵.
  2. 数量矩阵:对角矩阵主对角线上的所有元素都相等的矩阵,恒等变换就是单位矩阵.
  3. 对称矩阵: A = A T A=A^T A=AT
  4. 反对称矩阵: A = − A T A=-A^T A=AT
  5. 伴随矩阵:将 a i j a_{ij} aij换位 A j i A_{ji} Aji得到的矩阵, A ∗ ⋅ A = ∣ A ∣ E A^*\cdot A=|A|E AA=AE
  6. 逆矩阵: A ⋅ A − 1 = E , A − 1 = 1 ∣ A ∣ A ∗ A\cdot A^{-1}=E,A^{-1}=\frac{1}{|A|}A^* AA1=E,A1=A1A
  7. 不可逆矩阵又称奇异矩阵.
  8. 矩阵的转置意味着对某图形关于某点对称
  9. 子式:矩阵任意k行和k列交叉处的k阶行列式.
    10.矩阵经过有限次的初等变换形成的矩阵与原矩阵等价,记作$A
  10. 矩阵的秩:矩阵中存在某k阶子式不为0,且矩阵的所有k+1阶子式都为0.
  11. 有单位矩阵经一次初等变换的得到的矩阵为初等矩阵.
    (1). 交换E的ij两行,记作 P i j P_{ij} Pij
    (2).用非0常数乘E的第i行(列),记作 D i ( k ) D_i(k) Di(k)
    (3).将E的第j行(或列)的k倍加到第i行(或列),记作 T i j ( k ) T_{ij}(k) Tij(k)
  12. 特征向量为线性变换前后在同一条直线上的向量,特征值为某特征向量线性变换前后长度的比值.即 A α i = λ i α i A\alpha_i=\lambda_i\alpha_i Aαi=λiαi
  13. ∣ A − λ E ∣ = 0 |A-\lambda E|=0 AλE=0称为A的特征方程.
  14. 正交矩阵:每行(列)两两正交且为单位向量的矩阵, A T A = E A^TA=E ATA=E
  15. 相似矩阵:A,B为n阶方阵,若存在P使 B = P − 1 A P B=P^{-1}AP B=P1AP,称A,B相似,若B为对角矩阵,称B为A的相似标准型.
  16. 合同矩阵:若A,B满足 A = P T B P A=P^TBP A=PTBP,称A,B为合同矩阵.
  17. 若方阵A可以找到可逆的P使 P − 1 A P P^{-1}AP P1AP为对角矩阵,称A可对角化.
  18. 正定矩阵:设实二次型 f ( x 1 , x 2 , . . . , x n ) = x T A x . f(x_1,x_2,...,x_n)=x^TAx. f(x1,x2,...,xn)=xTAx.如果对任意x!=0,都有 x T A x > 0 x^TAx>0 xTAx>0,称f为正定二次型,A为正定矩阵(不要忽略前提,在实二次型下)

相关性质

  • 线性齐次方程组
  1. n元线性齐次方程组 A x = 0 Ax=0 Ax=0有非零解的充要条件为 ∣ A ∣ ! = 0 |A|!=0 A!=0 r ( A ) < n r(A)<n r(A)<n
  • 可逆矩阵性质:
  1. ( k A ) − 1 = 1 k A − 1 (kA)^{-1}=\frac{1}{k}A^{-1} (kA)1=k1A1
  2. ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\frac{1}{|A|} A1=A1
  3. ( A − 1 ) T = ( A T ) − 1 (A^{-1})^T=(A^T)^{-1} (A1)T=(AT)1
  4. ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
  5. 可逆矩阵A可表示为有限个初等矩阵的乘积.
  • 矩阵的秩
  1. 矩阵初等变换不改变矩阵的秩.(包括对换变换,数乘变换,倍加变换)
  2. n元齐次线性方程组 A x = 0 Ax=0 Ax=0有解的充要条件为r(A)<n.
  • 分块矩阵
  1. 分块矩阵的转置,不仅块与块之间转置,块内元素也要转置.
  • 特征值与特征向量
  1. 若方阵可对角化,其秩等于它的非零特征值的个数.
  2. λ 1 λ 2 . . . λ n = ∣ A ∣ \lambda_1\lambda_2...\lambda_n=|A| λ1λ2...λn=A
  3. λ 1 + λ 2 + . . . + λ n = a 11 + a 22 + . . . a n n \lambda_1+\lambda_2+...+\lambda_n=a_{11}+a_{22}+...a_{nn} λ1+λ2+...+λn=a11+a22+...ann,称其为traA,叫做A的迹.
  4. 矩阵秩为0的充要条件为 λ = 0 \lambda=0 λ=0为矩阵的秩.
  5. A A A A T A^T AT具有相同的特征多项式,因而具有相同的特征值,但不一定具有相同的特征向量.
  6. λ \lambda λ为A的特征值,则 f ( λ ) f(\lambda) f(λ) f ( A ) f(A) f(A)的特征值.当A可逆时, 1 λ \frac{1}{\lambda} λ1 A − 1 A^{-1} A1的特征值
  • 相似矩阵
  1. 相似矩阵具有相同的特征多项式,相同的行列式和特征值.
  2. 若AB相似,则 f ( A ) f ( B ) f(A)f(B) f(A)f(B)相似.
  3. 若AB相似,A可逆,则 A − 1 A^{-1} A1 B − 1 B^{-1} B1相似.
  4. A相似于对角矩阵的充要条件是A有n个线性无关的特征向量.
  • 合同矩阵
  1. 合同矩阵的秩相等.
  2. 合同矩阵具有相同的正惯性系数.
  • 正定二次型,正定矩阵
  1. 正定矩阵一定是是实对称矩阵.
  2. 正定矩阵合同于同阶单位阵.
  3. 实对称相似矩阵一定合同.

特征值和特征向量

  1. 特征值和特征向量的定义有计算公式,
  2. 如果特征向量为基向量,则有以下特点:
  3. 乘积更加容易算得(对角矩阵的乘积),因为只涉及对角线上的元素的乘积,故只需将对角线相同位置的元素相乘就行.如果是自己的n次方,只需将对角元素进行n次方运算即可.
  4. 解读对角矩阵:对角矩阵的每个列向量都是特征向量,每个列向量的非零元素就是他的一个特征值.
  5. 基变换矩阵:矩阵的线性无关的特征向量构成的矩阵
  6. 我们可以使特征向量成为基向量用于计算:
    将某个矩阵右乘基变换矩阵,左乘基变换矩阵的逆来将其对角化,得到的对角矩阵是该矩阵在以基变换矩阵为基的坐标系中的变换

基变换

  1. 空间中没有网格,一切坐标系都是为了方便计算而产生.
  2. 将基A(不是(1,0),(0,1))下的向量表示为以S((1,0)(0,1)为基)的坐标系中的向量时,只需要用A中该向量的坐标乘以A的基向量在B中的表示即可.同理,已知某向量在B中的表示方法,将其左乘A的基的逆就可以算出该向量在A中的表示.
  3. 如何转化一个矩阵:
    假设矩阵A为在(1,0)(0,1)的一个线性变换,向量α为以P为基的坐标系的一个向量,P为以P为基的坐标系的基在(1,0)(0,1)的表示,则首先用P左乘向量α得到α在(1,0)(0,1)的表示方法,再对其左乘A,即对其进行A变换,最后对整个式子左乘P的逆,就得到了α经过线性变换A后在P中的表达.P逆AP代表A这种变换在以P为基的坐标系的表达,其几何意义不变.

二次型

  • 施密特正交化:
    β 1 = α 1 , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 , β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 , . . . β n = α n − ( α n , β 1 ) ( β 1 , β 1 ) β 1 − ( α n , β 2 ) ( β 2 , β 2 ) β 2 − . . . − ( α n , β n − 1 ) ( β n − 1 , β n − 1 ) β n − 1 . \beta_1=\alpha_1,\\ \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1,\\ \beta_3=\alpha_3-\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2,\\ ...\\ \beta_n=\alpha_n-\frac{(\alpha_n,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_n,\beta_2)}{(\beta_2,\beta_2)}\beta_2-...-\frac{(\alpha_n,\beta_{n-1})}{(\beta_{n-1},\beta_{n-1})}\beta_{n-1}. β1=α1,β2=α2(β1,β1)(α2,β1)β1,β3=α3(β1,β1)(α3,β1)β1(β2,β2)(α3,β2)β2,...βn=αn(β1,β1)(αn,β1)β1(β2,β2)(αn,β2)β2...(βn1,βn1)(αn,βn1)βn1.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值