应用场景:针对某APP或某功能模块最近的用户量或者其他相关指标下降,如何进行分析?针对这个问题,之前的笔记里有提到洛洛公号里整理过的分析方法,如下图:
但我们忽视了这个分析方法的前提,尤其是在对细分维度环节的分析,是建立在已经构建好了一个完整的数据指标体系的基础上 ,因此本次着重学习如何去搭建一套完备的指标分析体系,有哪些方法或思考方向呢?下面是一些数据分析前辈提供的思路:
(1)《数据分析师求职面试指南》
-
总结思路:梳理路径——确定对比的指标——选取对比的时间维度——针对问题环节拓展用户维度
-
整体思路 :纵向和横向相结合,纵向是指梳理出问题的整个流程、路径,接着需要横向拓展不同的维度,最后横纵结合,得到一套完整的指标体系。
-
纵向分析:即了解用户行为的核心节点的过程,对于c端用户的分析,比较常见,核心的三个节点就是新增、活跃、留存/流失,大多数分析都是围绕这三个节点进行分析,围绕这三个节点可以纵向设计出很多指标,主要是绝对数量和百分比:1、对于新增用户,指标有新增用户数量、新增用户留存、新增用户活跃率等;2、对于活跃用户 ,有活跃用户数量、活跃用户中的新增用户数量,活跃用户中的老用户数量等;3、对于老用户,有老用户数量、老用户流失率、老用户唤醒率;4、对于流失用户有流失用户数、流失用户与新增用户比率;其中活跃用户是重点关注的,通过对新增到流失整个流程指标的构建,可以清晰地看到在那个环节最终活跃用户增加或者减少。
-
重点:对于活跃用户如何进行相应指标设计以及路径分析——对于活跃用户,要 研究其活跃行为,从而提升用户体验,针对不同类型的产品需要进行相应的细分设计。对于电商产品需要关注的是从来访用户到用户最终支付的整个流程。见下图:
-
针对每一流程,每一步都可以统计出相应的用户数量以及上一步的转化率,比如来访用户数量、点击用户数量、加入购物车数量、下单用户数量、支付用户数量、最终成功支付的用户数量、转化率:点击/曝光转化率、下单/点击转化率、下单/加购转化率、支付/下单转化率、成功/支付转化率,这些指标能构成一个完整的纵向指标体系。通过这些指标 就可以发现是那个环节存在问题。除了关注用户数量,对于电商产品,还要关注金额指标以及相应的客单价等指标。其他产品也可以按照纵向分析思路(新增、活跃、留存/流失)进行分析,同时还需要针对活跃用户进行分析,需要对所在部门的业务有所了解,梳理出产品生命周期以及活跃用户的行为情况。 -
有了明确的用户行为路径分析之后,如何进行进一步分析——进行横向分析,对于同一个指标,基于不同的维度进行相应的拓展,常见的维度包括时间维度和用户维度。在时间维度的分析上要注意不同的业务具有不同特性,比如低频租房APP与社交类产品的差别,对于高频使用的APP与功能,通常关注1-7天的整体数据,也可以是自然周,对于低频使用的APP或功能,需要将 时间拉长,关注15、30、90天甚至更长,月、季度、年度的数据等。另外时间维度还有同比、环比的概念,即需要有参考数据来进行比较,对于周期性比较强的产品,需要先确定产品的周期,还有的产品容易受到节假日的影响。对于实时性要求高的产品,需要将数据指标细化到小时级别。
-
横向分析还有一个维度:从用户画像维度拓展,比如用户的基本属性、所在地、设备情况、新老用户等,这些维度下还可以进行细分、拓展。
-
案例与总结:
(2)来自洛洛的数据指标的搭建流程
来自公号“一个数据人的自留地”,作者写的特别详细,很有条理性,我觉得落地性很好,看了之后我觉得我要是遇到这样问题可以按照这种分析思路直接上手。梳理了一下午,算是对指标体系的构建有了感觉。
实际案例——网约车体系中的数据指标构建:
三者各有千秋,也有很多相似的地方,比如都要梳理业务流程、都需要调研、统一指标口径等等,不过这些终究是作者们的经验,最终应用还需要自己理解到位,变成自己的东西,一起加油啦。