微积分-积分4.1(面积和距离)

面积问题

我们首先尝试解决面积问题:找到曲线 y = f ( x ) y = f(x) y=f(x) a a a b b b 之间的区域 S S S 的面积(图1)。这意味着 S S S 由一个连续函数 f f f 的图像(其中 f ( x ) ≥ 0 f(x) \geq 0 f(x)0)、垂直线 x = a x = a x=a x = b x = b x=b 以及 x x x 轴所围成。
在这里插入图片描述

在尝试解决面积问题时,我们必须问自己:面积这个词的含义是什么?对于有直边的区域,这个问题很容易回答。对于矩形,面积定义为长度和宽度的乘积。对于三角形,面积是底边长度与高度乘积的一半。多边形的面积通过将其分割成多个三角形(如图2所示)并将这些三角形的面积相加来求得。
在这里插入图片描述

然而,找到有曲边的区域的面积并不那么容易。我们都对区域的面积有一个直观的理解。但面积问题的一部分是通过给出面积的精确定义来使这个直观的理解更加准确。

回想一下,在定义切线时,我们首先通过近似割线的斜率来近似切线的斜率,然后我们取这些近似值的极限。对于面积,我们采取类似的方法。我们首先通过矩形来近似区域 S S S,然后随着矩形数量的增加,我们取这些矩形面积的极限。以下示例说明了这个过程。

例1 使用矩形估算抛物线 y = x 2 y = x^2 y=x2 0 0 0 1 1 1 下方的面积(图3中所示的抛物区域 S )。

在这里插入图片描述

我们首先注意到,区域 S S S 的面积必须在 0 0 0 1 1 1 之间,因为 S S S 被包含在边长为 1 1 1 的正方形内,但我们当然可以更精确。假设我们通过绘制垂直线 KaTeX parse error: Can't use function '\)' in math mode at position 16: x = \frac{1}{4}\̲)̲, \(x = \frac{1…, 和 x = 3 4 x = \frac{3}{4} x=43 S S S 分成四个条带 S 1 , S 2 , S 3 , S 4 S_1, S_2, S_3, S_4 S1,S2,S3,S4,如图4(a)所示。
在这里插入图片描述

我们可以用一个矩形来近似每个条带,该矩形的底与条带相同,高度等于条带右边缘的高度(见图4(b))。换句话说,这些矩形的高度是函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2 在子区间 [ 0 , 1 4 ] [0, \frac{1}{4}] [0,41], [ 1 4 , 1 2 ] [\frac{1}{4}, \frac{1}{2}] [41,21], [ 1 2 , 3 4 ] [\frac{1}{2}, \frac{3}{4}] [21,43], 和 [ 3 4 , 1 ] [\frac{3}{4}, 1] [43,1] 的右端点处的值。

每个矩形的宽度为 1 4 \frac{1}{4} 41,高度分别为 ( 1 4 ) 2 \left(\frac{1}{4}\right)^2 (41)2, ( 1 2 ) 2 \left(\frac{1}{2}\right)^2 (21)2, ( 3 4 ) 2 \left(\frac{3}{4}\right)^2 (43)2, 1 2 1^2 12。如果我们让 R 4 R_4 R4 表示这些近似矩形的面积之和,则有:

R 4 = 1 4 ⋅ ( 1 4 ) 2 + 1 4 ⋅ ( 1 2 ) 2 + 1 4 ⋅ ( 3 4 ) 2 + 1 4 ⋅ 1 2 = 15 32 = 0.46875 R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot 1^2 = \frac{15}{32} = 0.46875 R4=41(41)2+41(21)2+41(43)2+4112=3215=0.46875

从图4(b)中我们看到,区域 S S S 的面积 A A A 小于 R 4 R_4 R4,所以:

A < 0.46875 A < 0.46875 A<0.46875

如果我们不用图4(b)中的矩形,而是使用图5中的更小的矩形,这些矩形的高度是子区间左端点处 f f f 的值(最左边的矩形已坍塌,因为其高度为0)。这些近似矩形的面积之和为:
在这里插入图片描述

L 4 = 1 4 ⋅ 0 2 + 1 4 ⋅ ( 1 4 ) 2 + 1 4 ⋅ ( 1 2 ) 2 + 1 4 ⋅ ( 3 4 ) 2 = 7 32 = 0.21875 L_4 = \frac{1}{4} \cdot 0^2 + \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 = \frac{7}{32} = 0.21875 L4=4102+41(41)2+41(21)2+41(43)2=327=0.21875

我们看到,区域 S S S 的面积 A A A 大于 L 4 L_4 L4,因此我们对 A A A 有如下的上下估计:

0.21875 < A < 0.46875 0.21875 < A < 0.46875 0.21875<A<0.46875

我们可以使用更多条带重复此过程。图6显示了将区域 S S S 分成八个等宽条带时的情况。
在这里插入图片描述

通过计算较小矩形面积的和( L 8 L_8 L8)和较大矩形面积的和( R 8 R_8 R8),我们得到了对 A A A 的更好上下估计:

0.2734375 < A < 0.3984375 0.2734375 < A < 0.3984375 0.2734375<A<0.3984375

因此,问题的一个可能答案是说,区域 S S S 的真实面积在 0.2734375 0.2734375 0.2734375 0.3984375 0.3984375 0.3984375 之间。

我们可以通过增加条带数来获得更好的估计。表格显示了使用 n n n 个矩形(通过计算机)时的类似计算结果,这些矩形的高度分别在左端点( L n L_n Ln)或右端点( R n R_n Rn)处找到。特别地,我们看到,使用 50 50 50 个条带时,面积在 0.3234 0.3234 0.3234 0.3434 0.3434 0.3434 之间。使用 1000 1000 1000 个条带时,我们将其进一步缩小到: A A A 0.3283335 0.3283335 0.3283335 0.3338335 0.3338335 0.3338335 之间。一个较好的估计可以通过平均这些数字得出: A ≈ 0.3333335 A \approx 0.3333335 A0.3333335
在这里插入图片描述

从示例1表格中的值来看,似乎 R n R_n Rn 随着 n n n 的增加接近 1 3 \frac{1}{3} 31。我们将在下一个示例中确认这一点。

例2 对于例1中的区域 S S S,证明近似矩形的面积之和趋近于 1 3 \frac{1}{3} 31,也就是说,

lim ⁡ n → ∞ R n = 1 3 \lim_{n \to \infty} R_n = \frac{1}{3} nlimRn=31


R n R_n Rn 是图7中 n n n 个矩形的面积之和。每个矩形的宽度为 1 / n 1/n 1/n,高度是函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2 在点 1 / n , 2 / n , 3 / n , … , n / n 1/n, 2/n, 3/n, \ldots, n/n 1/n,2/n,3/n,,n/n 处的取值,即高度为 ( 1 / n ) 2 (1/n)^2 (1/n)2, ( 2 / n ) 2 (2/n)^2 (2/n)2, ( 3 / n ) 2 (3/n)^2 (3/n)2, … \ldots , ( n / n ) 2 (n/n)^2 (n/n)2。因此,
在这里插入图片描述
R n = 1 n ( 1 n ) 2 + 1 n ( 2 n ) 2 + 1 n ( 3 n ) 2 + ⋯ + 1 n ( n n ) 2 = 1 n ⋅ 1 n 2 ( 1 2 + 2 2 + 3 2 + ⋯ + n 2 ) = 1 n 3 ( 1 2 + 2 2 + 3 2 + ⋯ + n 2 ) \begin{align*} R_n &= \frac{1}{n} \left(\frac{1}{n}\right)^2 + \frac{1}{n} \left(\frac{2}{n}\right)^2 + \frac{1}{n} \left(\frac{3}{n}\right)^2 + \cdots + \frac{1}{n} \left(\frac{n}{n}\right)^2 \\ &= \frac{1}{n} \cdot \frac{1}{n^2} \left(1^2 + 2^2 + 3^2 + \cdots + n^2\right) \\ &= \frac{1}{n^3} \left(1^2 + 2^2 + 3^2 + \cdots + n^2\right) \end{align*} Rn=n1(n1)2+n1(n2)2+n1(n3)2++n1(nn)2=n1n21(12+22+32++n2)=n31(12+22+32++n2)

这里我们需要用到前 n n n 个正整数平方和的公式:

1 2 + 2 2 + 3 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6} 12+22+32++n2=6n(n+1)(2n+1)

或许你以前见过这个公式。它在附录E的例5中证明。将公式代入我们对 R n R_n Rn 的表达式中,我们得到

R n = 1 n 3 ⋅ n ( n + 1 ) ( 2 n + 1 ) 6 = ( n + 1 ) ( 2 n + 1 ) 6 n 2 R_n = \frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6n^2} Rn=n316n(n+1)(2n+1)=6n2(n+1)(2n+1)

因此我们有

lim ⁡ n → ∞ R n = lim ⁡ n → ∞ ( n + 1 ) ( 2 n + 1 ) 6 n 2 = lim ⁡ n → ∞ 1 6 ( n + 1 n ) ( 2 n + 1 n ) = lim ⁡ n → ∞ 1 6 ( 1 + 1 n ) ( 2 + 1 n ) = 1 6 ⋅ 1 ⋅ 2 = 1 3 \begin{align*} \lim_{n \to \infty} R_n &= \lim_{n \to \infty} \frac{(n+1)(2n+1)}{6n^2} \\ &= \lim_{n \to \infty} \frac{1}{6} \left(\frac{n+1}{n}\right) \left(\frac{2n+1}{n}\right) \\ &= \lim_{n \to \infty} \frac{1}{6} \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right) \\ &= \frac{1}{6} \cdot 1 \cdot 2 = \frac{1}{3} \end{align*} nlimRn=nlim6n2(n+1)(2n+1)=nlim61(nn+1)(n2n+1)=nlim61(1+n1)(2+n1)=6112=31

可以证明下方近似和也趋近于 1 3 \frac{1}{3} 31,即

lim ⁡ n → ∞ L n = 1 3 \lim_{n \to \infty} L_n = \frac{1}{3} nlimLn=31

从图 8 和图 9 中可以看出,随着 n n n 的增加, L n L_n Ln R n R_n Rn 都逐渐成为对区域 S S S 面积的越来越好的近似。因此我们定义面积 A A A 为近似矩形面积和的极限,即

A = lim ⁡ n → ∞ R n = lim ⁡ n → ∞ L n = 1 3 A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} L_n = \frac{1}{3} A=nlimRn=nlimLn=31
在这里插入图片描述

我们将例子 1 和 2 的思想应用到图 1 中更一般的区域 S S S 上。首先我们将区域 S S S 等分为 n n n 条带 S 1 , S 2 , … , S n S_1, S_2, \dots, S_n S1,S2,,Sn,如图 10 所示。
在这里插入图片描述

该区间 [ a , b ] [a, b] [a,b] 的宽度为 b − a b - a ba,因此每个带的宽度为

Δ x = b − a n \Delta x = \frac{b - a}{n} Δx=nba

这些带将区间 [ a , b ] [a, b] [a,b] 分成 n n n 个子区间

[ x 0 , x 1 ] , [ x 1 , x 2 ] , [ x 2 , x 3 ] , … , [ x n − 1 , x n ] [x_0, x_1], [x_1, x_2], [x_2, x_3], \dots, [x_{n-1}, x_n] [x0,x1],[x1,x2],[x2,x3],,[xn1,xn]

其中 x 0 = a x_0 = a x0=a x n = b x_n = b xn=b。子区间的右端点为

x 1 = a + Δ x , x 2 = a + 2 Δ x , x 3 = a + 3 Δ x , … , x i = a + i Δ x , … \begin{align*} x_1 &= a + \Delta x, \\ x_2 &= a + 2\Delta x, \\ x_3 &= a + 3\Delta x, \\ \dots, x_i &= a + i\Delta x, \dots \end{align*} x1x2x3,xi=a+Δx,=a+x,=a+x,=a+iΔx,

我们用宽度为 Δ x \Delta x Δx 且高度为 f ( x i ) f(x_i) f(xi) 的矩形来近似第 i i i 条带 S i S_i Si,其中 f ( x i ) f(x_i) f(xi) 是函数 f f f 在右端点 x i x_i xi 的值(见图 11)。那么第 i i i 个矩形的面积为 f ( x i ) Δ x f(x_i) \Delta x f(xi)Δx。我们直观上认为区域 S S S 的面积可以由这些矩形的面积之和来近似,即
在这里插入图片描述

R n = f ( x 1 ) Δ x + f ( x 2 ) Δ x + ⋯ + f ( x n ) Δ x R_n = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x Rn=f(x1)Δx+f(x2)Δx++f(xn)Δx

图 12 显示了 n = 2 , 4 , 8 , 12 n = 2, 4, 8, 12 n=2,4,8,12 时的这种近似。注意随着条带数的增加,这种近似变得越来越好,即当 n → ∞ n \to \infty n 时。因此我们定义区域 S S S 的面积 A A A 如下。
在这里插入图片描述

定义

连续函数 f f f 下区域 S S S面积 A A A 是近似矩形面积和的极限:
A = lim ⁡ n → ∞ R n = lim ⁡ n → ∞ [ f ( x 1 ) Δ x + f ( x 2 ) Δ x + ⋯ + f ( x n ) Δ x ] A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1) \Delta x + f(x_2) \Delta x + \cdots + f(x_n) \Delta x] A=nlimRn=nlim[f(x1)Δx+f(x2)Δx++f(xn)Δx]

可以证明,定义 中的极限总是存在的,因为我们假设 f f f 是连续的。也可以证明,如果我们使用左端点,我们也会得到相同的值:

A = lim ⁡ n → ∞ L n = lim ⁡ n → ∞ [ f ( x 0 ) Δ x + f ( x 1 ) Δ x + ⋯ + f ( x n − 1 ) Δ x ] A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} [f(x_0) \Delta x + f(x_1) \Delta x + \cdots + f(x_{n-1}) \Delta x] A=nlimLn=nlim[f(x0)Δx+f(x1)Δx++f(xn1)Δx]

事实上,除了使用左端点或右端点,我们还可以将第 i i i 个矩形的高度取为 f f f 在子区间 [ x i − 1 , x i ] [x_{i-1}, x_i] [xi1,xi] 中任意点 x i ∗ x_i^* xi 的值。我们将这些数 x 1 ∗ , x 2 ∗ , … , x n ∗ x_1^*, x_2^*, \dots, x_n^* x1,x2,,xn 称为样本点。图 13 显示了当样本点不是端点时的近似矩形。因此,区域 S S S 面积的一个更通用的表达式为

A = lim ⁡ n → ∞ [ f ( x 1 ∗ ) Δ x + f ( x 2 ∗ ) Δ x + ⋯ + f ( x n ∗ ) Δ x ] A = \lim_{n \to \infty} [f(x_1^*) \Delta x + f(x_2^*) \Delta x + \cdots + f(x_n^*) \Delta x] A=nlim[f(x1)Δx+f(x2)Δx++f(xn)Δx]
在这里插入图片描述

注意 可以证明面积的一个等价定义如下:面积 A A A 是一个独特的数,它小于所有的上和,并大于所有的下和。例如,在例子 1 和 2 中我们看到,面积 A = 1 3 A = \frac{1}{3} A=31 被所有的左近似和 L n L_n Ln 和所有的右近似和 R n R_n Rn 夹在中间。在这些例子中,函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2 在区间 [ 0 , 1 ] [0, 1] [0,1] 上是递增的,因此下和来自左端点,上和来自右端点。(见图 8 和图 9。)一般来说,我们通过选择样本点 x i ∗ x_i^* xi,使得 f ( x i ∗ ) f(x_i^*) f(xi) 是第 i i i 个子区间中 f f f 的最小值(和最大值)来形成下和(和上和)。(见图 14 )
在这里插入图片描述

我们经常使用**求和符号(sigma notation)**来更紧凑地表示有很多项的和。例如:

∑ i = 1 n f ( x i ) Δ x = f ( x 1 ) Δ x + f ( x 2 ) Δ x + ⋯ + f ( x n ) Δ x \sum_{i=1}^{n} f(x_i) \Delta x = f(x_1) \Delta x + f(x_2) \Delta x + \cdots + f(x_n) \Delta x i=1nf(xi)Δx=f(x1)Δx+f(x2)Δx++f(xn)Δx

因此,方程 2、3 和 4 中面积的表达式可以写成如下形式:

A = lim ⁡ n → ∞ ∑ i = 1 n f ( x i ) Δ x A = lim ⁡ n → ∞ ∑ i = 1 n f ( x i − 1 ) Δ x A = lim ⁡ n → ∞ ∑ i = 1 n f ( x i ∗ ) Δ x \begin{align*} A &= \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \\ A &= \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i-1}) \Delta x\\ A &= \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x\\ \end{align*} AAA=nlimi=1nf(xi)Δx=nlimi=1nf(xi1)Δx=nlimi=1nf(xi)Δx

以下是你上传的最新图片内容的中文翻译:


例3 A A A f ( x ) = cos ⁡ x f(x) = \cos x f(x)=cosx 的图形下,从 x = 0 x = 0 x=0 x = b x = b x=b 之间区域的面积,其中 0 ≤ b ≤ π 2 0 \leq b \leq \frac{\pi}{2} 0b2π
(a) 使用右端点,找到 A A A 的表达式作为极限。不需要求出极限值。
(b) 通过将样本点取为中点并使用四个子区间,估计当 b = π 2 b = \frac{\pi}{2} b=2π 时的面积。


(a) 由于 a = 0 a = 0 a=0,子区间的宽度为

Δ x = b − 0 n = b n \Delta x = \frac{b - 0}{n} = \frac{b}{n} Δx=nb0=nb

所以 x 1 = b n , x 2 = 2 b n , x 3 = 3 b n , x i = i b n , x n = n b n x_1 = \frac{b}{n}, x_2 = \frac{2b}{n}, x_3 = \frac{3b}{n}, x_i = \frac{ib}{n}, x_n = \frac{nb}{n} x1=nb,x2=n2b,x3=n3b,xi=nib,xn=nnb。近似矩形的面积和为

R n = f ( x 1 ) Δ x + f ( x 2 ) Δ x + ⋯ + f ( x n ) Δ x = ( cos ⁡ b n ) b n + ( cos ⁡ 2 b n ) b n + ⋯ + ( cos ⁡ n b n ) b n = b n [ cos ⁡ b n + cos ⁡ 2 b n + ⋯ + cos ⁡ n b n ] \begin{align*} R_n &= f(x_1) \Delta x + f(x_2) \Delta x + \cdots + f(x_n) \Delta x\\ &= (\cos \frac{b}{n}) \frac{b}{n} + (\cos \frac{2b}{n}) \frac{b}{n} + \cdots + (\cos \frac{nb}{n}) \frac{b}{n}\\ &= \frac{b}{n} \left[\cos \frac{b}{n} + \cos \frac{2b}{n} + \cdots + \cos \frac{nb}{n}\right]\\ \end{align*} Rn=f(x1)Δx+f(x2)Δx++f(xn)Δx=(cosnb)nb+(cosn2b)nb++(cosnnb)nb=nb[cosnb+cosn2b++cosnnb]

根据定义,面积 A A A

A = lim ⁡ n → ∞ R n = lim ⁡ n → ∞ b n [ cos ⁡ b n + cos ⁡ 2 b n + ⋯ + cos ⁡ n b n ] A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \frac{b}{n} \left[\cos \frac{b}{n} + \cos \frac{2b}{n} + \cdots + \cos \frac{nb}{n}\right] A=nlimRn=nlimnb[cosnb+cosn2b++cosnnb]

使用求和符号我们可以写为

A = lim ⁡ n → ∞ b n ∑ i = 1 n cos ⁡ i b n A = \lim_{n \to \infty} \frac{b}{n} \sum_{i=1}^{n} \cos \frac{ib}{n} A=nlimnbi=1ncosnib

手动计算这个极限非常困难,但在计算机代数系统的帮助下并不难。在第 4.3 节中我们将能够找到更简单的方法来求 A A A

(b) 令 n = 4 n = 4 n=4 b = π 2 b = \frac{\pi}{2} b=2π,我们有 Δ x = π / 2 4 = π 8 \Delta x = \frac{\pi/2}{4} = \frac{\pi}{8} Δx=4π/2=8π,因此子区间为 [ 0 , π 8 ] , [ π 8 , π 4 ] , [ π 4 , 3 π 8 ] , [ 3 π 8 , π 2 ] [0, \frac{\pi}{8}], [\frac{\pi}{8}, \frac{\pi}{4}], [\frac{\pi}{4}, \frac{3\pi}{8}], [\frac{3\pi}{8}, \frac{\pi}{2}] [0,8π],[8π,4π],[4π,83π],[83π,2π]。这些子区间的中点为

x 1 ∗ = π 16 , x 2 ∗ = 3 π 16 , x 3 ∗ = 5 π 16 , x 4 ∗ = 7 π 16 x_1^* = \frac{\pi}{16}, x_2^* = \frac{3\pi}{16}, x_3^* = \frac{5\pi}{16}, x_4^* = \frac{7\pi}{16} x1=16π,x2=163π,x3=165π,x4=167π

四个近似矩形的面积和为(见图 15)

M 4 = ∑ i = 1 4 f ( x i ∗ ) Δ x = f ( π 16 ) Δ x + f ( 3 π 16 ) Δ x + f ( 5 π 16 ) Δ x + f ( 7 π 16 ) Δ x = π 8 [ cos ⁡ π 16 + cos ⁡ 3 π 16 + cos ⁡ 5 π 16 + cos ⁡ 7 π 16 ] ≈ 1.006 \begin{align*} M_4 &= \sum_{i=1}^{4} f(x_i^*) \Delta x\\ &= f(\frac{\pi}{16}) \Delta x + f(\frac{3\pi}{16}) \Delta x + f(\frac{5\pi}{16}) \Delta x + f(\frac{7\pi}{16}) \Delta x\\ &= \frac{\pi}{8} \left[\cos \frac{\pi}{16} + \cos \frac{3\pi}{16} + \cos \frac{5\pi}{16} + \cos \frac{7\pi}{16}\right] \approx 1.006 \end{align*} M4=i=14f(xi)Δx=f(16π)Δx+f(163π)Δx+f(165π)Δx+f(167π)Δx=8π[cos16π+cos163π+cos165π+cos167π]1.006

因此,对面积的估计为 A ≈ 1.006 A \approx 1.006 A1.006

距离问题

现在我们来考虑距离问题:如果已知一个物体在某个时间段内的速度随时间变化,如何找到该物体在这段时间内所经过的距离?(从某种意义上说,这是我们在前面讨论的速度问题的逆问题。)如果速度保持不变,那么可以通过以下公式很容易地求解距离问题:
距离 = 速度 × 时间 \text{距离} = \text{速度} \times \text{时间} 距离=速度×时间

但是如果速度变化,那么找到经过的距离就不是那么容易了。我们在接下来的例子中研究这个问题。

例4 假设我们的汽车的里程表坏了,我们想估算在一个30秒的时间段内行驶的距离。我们每5秒钟记录一次速度表的读数,并将它们记录在下表中:

时间 (s)051015202530
速度 (mi/h)17212429323128

为了使时间和速度保持一致的单位,我们将速度读数转换为每秒的英尺数(1 mi/h = 5280/3600 ft/s):

时间 (s)051015202530
速度 (ft/s)25313543474541

在前5秒内,速度变化不大,因此我们可以假设速度是恒定的,通过假设速度恒定来估算这段时间内行驶的距离。如果我们取该时间段内的速度为初始速度(25 ft/s),那么我们得到在前5秒内行驶的距离的近似值为:

25  ft/s × 5  s = 125  ft 25 \text{ ft/s} \times 5 \text{ s} = 125 \text{ ft} 25 ft/s×5 s=125 ft

同样,在第二个时间段内速度近似不变,我们取它为 t = 5 t = 5 t=5 时的速度。因此,从 t = 5 t = 5 t=5 秒到 t = 10 t = 10 t=10 秒的距离近似为:

31  ft/s × 5  s = 155  ft 31 \text{ ft/s} \times 5 \text{ s} = 155 \text{ ft} 31 ft/s×5 s=155 ft

如果我们为其他时间段进行类似的估算,我们得到行驶的总距离为:

( 25 × 5 ) + ( 31 × 5 ) + ( 35 × 5 ) + ( 43 × 5 ) + ( 47 × 5 ) + ( 45 × 5 ) = 1130  ft (25 \times 5) + (31 \times 5) + (35 \times 5) + (43 \times 5) + (47 \times 5) + (45 \times 5) = 1130 \text{ ft} (25×5)+(31×5)+(35×5)+(43×5)+(47×5)+(45×5)=1130 ft

我们也可以使用每个时间段结束时的速度,而不是开始时的速度作为假定的恒定速度。这样,我们的估算变为:

( 31 × 5 ) + ( 35 × 5 ) + ( 43 × 5 ) + ( 47 × 5 ) + ( 45 × 5 ) + ( 41 × 5 ) = 1210  ft (31 \times 5) + (35 \times 5) + (43 \times 5) + (47 \times 5) + (45 \times 5) + (41 \times 5) = 1210 \text{ ft} (31×5)+(35×5)+(43×5)+(47×5)+(45×5)+(41×5)=1210 ft

如果我们想要更准确的估计,我们可以每两秒钟,甚至每秒钟记录一次速度。

或许例子 4 中的计算让你想起了我们之前用来估算面积的和。当我们绘制汽车的速度函数图形(如图 16 所示)并为每个时间间隔绘制矩形时,矩形的高度是每个时间间隔的初始速度。第一个矩形的面积是 25 × 5 = 125,这也是我们对前五秒内行驶距离的估计。实际上,图中的每个矩形的面积可以解释为距离,因为它们的高度表示速度,宽度表示时间。图 16 中矩形面积的总和 L 6 = 1130 L_6 = 1130 L6=1130,这是我们对行驶的总距离的初始估计。
在这里插入图片描述

一般来说,假设一个物体以速度 v = f ( t ) v = f(t) v=f(t) 移动,其中 a ≤ t ≤ b a \leq t \leq b atb f ( t ) ≥ 0 f(t) \geq 0 f(t)0(所以物体总是沿正方向移动)。我们在时刻 t 0 ( = a ) , t 1 , t 2 , … , t n ( = b ) t_0 (= a), t_1, t_2, \ldots, t_n (= b) t0(=a),t1,t2,,tn(=b) 记录速度,使得在每个子区间内速度近似不变。如果这些时间均匀间隔,那么相邻读数之间的时间间隔为 Δ t = ( b − a ) / n \Delta t = (b - a)/n Δt=(ba)/n。在第一个时间间隔内,速度近似为 f ( t 0 ) f(t_0) f(t0),因此行驶的距离近似为 f ( t 0 ) Δ t f(t_0) \Delta t f(t0)Δt。类似地,在第二个时间间隔内行驶的距离近似为 f ( t 1 ) Δ t f(t_1) \Delta t f(t1)Δt,总距离为:

f ( t 0 ) Δ t + f ( t 1 ) Δ t + ⋯ + f ( t n − 1 ) Δ t = ∑ i = 1 n f ( t i − 1 ) Δ t f(t_0) \Delta t + f(t_1) \Delta t + \cdots + f(t_{n-1}) \Delta t = \sum_{i=1}^{n} f(t_{i-1}) \Delta t f(t0)Δt+f(t1)Δt++f(tn1)Δt=i=1nf(ti1)Δt

如果我们使用右端点速度而不是左端点速度,总距离为:

f ( t 1 ) Δ t + f ( t 2 ) Δ t + ⋯ + f ( t n ) Δ t = ∑ i = 1 n f ( t i ) Δ t f(t_1) \Delta t + f(t_2) \Delta t + \cdots + f(t_n) \Delta t = \sum_{i=1}^{n} f(t_i) \Delta t f(t1)Δt+f(t2)Δt++f(tn)Δt=i=1nf(ti)Δt

因此,精确行驶的距离 d d d 是这些表达式的极限:

d = lim ⁡ n → ∞ ∑ i = 1 n f ( t i − 1 ) Δ t = lim ⁡ n → ∞ ∑ i = 1 n f ( t i ) Δ t d = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_{i-1}) \Delta t = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_i) \Delta t d=nlimi=1nf(ti1)Δt=nlimi=1nf(ti)Δt

我们将在第 4.4 节中看到这确实是正确的。

由于方程 5 与方程 2 和 3 中面积的表达式形式相同,因此行驶的距离等于速度函数图形下的面积。在第 5 章中,我们将看到其他自然科学和社会科学中感兴趣的量(如变力做功或心脏输出的血量)也可以解释为曲线下的面积。因此,当我们在本章中计算面积时,请记住,它们可以以各种实际方式进行解释。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值