微积分-定积分4.4(不定积分和净变化定理)

我们在 4.3 节中看到,微积分基本定理的第二部分为求解函数的定积分提供了一种非常强大的方法,前提是我们能够找到该函数的一个反导数。在本节中,我们将介绍反导数的记号,回顾反导数的公式,并用它们来计算定积分。我们还重新表述了微积分基本定理的第二部分(FTC2),使其更容易应用于科学和工程问题。

不定积分

基本定理的两个部分都建立了反导数和定积分之间的联系。第1部分指出,如果函数 f f f 是连续的,那么 ∫ a x f ( t ) d t \int_{a}^{x} f(t) dt axf(t)dt f f f 的一个反导数。第2部分则表明, ∫ a b f ( x ) d x \int_{a}^{b} f(x) dx abf(x)dx 可以通过计算 F ( b ) − F ( a ) F(b) - F(a) F(b)F(a) 来求得,其中 F F F f f f 的一个反导数。

我们需要一个方便的符号来表示反导数,使它们易于使用。由于基本定理给出了反导数和积分之间的关系,符号 ∫ f ( x ) d x \int f(x) dx f(x)dx 传统上用于表示 f f f 的反导数,并称为不定积分。因此:

∫ f ( x ) d x = F ( x ) 表示 F ′ ( x ) = f ( x ) \int f(x) dx = F(x) \text{表示} F'(x) = f(x) f(x)dx=F(x)表示F(x)=f(x)

例如,我们可以写:

∫ x 2 d x = x 3 3 + C \int x^2 dx = \frac{x^3}{3} + C x2dx=3x3+C

因为

d d x ( x 3 3 + C ) = x 2 \frac{d}{dx} \left( \frac{x^3}{3} + C \right) = x^2 dxd(3x3+C)=x2

因此,我们可以将不定积分视为表示一个函数的整个函数族(对于常数 C C C 的每一个值,对应一个反导数)。

你应该仔细区分定积分和不定积分。定积分 ∫ a b f ( x ) d x \int_{a}^{b} f(x) dx abf(x)dx 是一个数值,而不定积分 ∫ f ( x ) d x \int f(x) dx f(x)dx 是一个函数(或函数族)。它们之间的联系在基本定理的第2部分中给出:如果 f f f 在区间 [ a , b ] [a, b] [a,b] 上是连续的,那么:

∫ a b f ( x ) d x = [ ∫ f ( x ) d x ] a b \int_{a}^{b} f(x) dx = \left[ \int f(x) dx \right]_{a}^{b} abf(x)dx=[f(x)dx]ab

基本定理的有效性依赖于我们是否有足够的函数反导数。因此,我们重述第3.9节中的反导数公式表,并添加了一些与不定积分相关的公式。通过对右侧的函数求导并获得被积函数,可以验证任何公式。例如:

∫ sec ⁡ 2 x d x = tan ⁡ x + C \int \sec^2 x dx = \tan x + C sec2xdx=tanx+C

因为

d d x ( tan ⁡ x + C ) = sec ⁡ 2 x \frac{d}{dx} (\tan x + C) = \sec^2 x dxd(tanx+C)=sec2x

公式列表如下:

在这里插入图片描述

请回忆定理3.9.1:在给定区间上,最一般的反导数是通过在特定反导数上加上一个常数得到的。我们采纳的约定是,当给出一个不定积分公式时,它仅在某个区间上有效。因此,我们写出:

∫ 1 x 2 d x = − 1 x + C \int \frac{1}{x^2} dx = -\frac{1}{x} + C x21dx=x1+C

理解为该公式在区间 ( 0 , ∞ ) (0, \infty) (0,) ( − ∞ , 0 ) (-\infty, 0) (,0) 上有效。这与函数 f ( x ) = 1 x 2 , x ≠ 0 f(x) = \frac{1}{x^2}, x \neq 0 f(x)=x21,x=0 的最一般反导数尽管是:

F ( x ) = { − 1 x + C 1 , 如果  x < 0 − 1 x + C 2 , 如果  x > 0 F(x) = \begin{cases} -\frac{1}{x} + C_1, & \text{如果 } x < 0 \\ -\frac{1}{x} + C_2, & \text{如果 } x > 0 \end{cases} F(x)={x1+C1,x1+C2,如果 x<0如果 x>0

的事实是一致的。

例1 求一般的不定积分:

∫ ( 10 x 4 − 2 sec ⁡ 2 x ) d x \int (10x^4 - 2\sec^2 x) dx (10x42sec2x)dx

根据我们的约定和表1,我们有:

∫ ( 10 x 4 − 2 sec ⁡ 2 x ) d x = 10 ∫ x 4 d x − 2 ∫ sec ⁡ 2 x d x \int (10x^4 - 2\sec^2 x) dx = 10 \int x^4 dx - 2 \int \sec^2 x dx (10x42sec2x)dx=10x4dx2sec2xdx

= 10 x 5 5 − 2 tan ⁡ x + C = 10 \frac{x^5}{5} - 2 \tan x + C =105x52tanx+C

= 2 x 5 − 2 tan ⁡ x + C = 2x^5 - 2 \tan x + C =2x52tanx+C

你应该通过对结果求导来验证该答案。

在这里插入图片描述

例2 计算: ∫ cos ⁡ θ sin ⁡ 2 θ d θ \int \frac{\cos \theta}{\sin^2 \theta} d\theta sin2θcosθdθ.

这个不定积分在表1中无法立即找到,因此我们使用三角恒等式在积分前对函数进行重新表达:

∫ cos ⁡ θ sin ⁡ 2 θ d θ = ∫ ( 1 sin ⁡ θ ) ( cos ⁡ θ sin ⁡ θ ) d θ = ∫ csc ⁡ θ cot ⁡ θ d θ = − csc ⁡ θ + C \begin{align*} \int \frac{\cos \theta}{\sin^2 \theta} d\theta &= \int \left( \frac{1}{\sin \theta} \right) \left( \frac{\cos \theta}{\sin \theta} \right) d\theta\\ &= \int \csc \theta \cot \theta d\theta = -\csc \theta + C \end{align*} sin2θcosθdθ=(sinθ1)(sinθcosθ)dθ=cscθcotθdθ=cscθ+C

以下是你上传图片内容的中文翻译:


例3 计算: ∫ 0 3 ( x 3 − 6 x ) d x \int_{0}^{3} (x^3 - 6x) dx 03(x36x)dx.

使用基本定理第二部分 (FTC2) 和表1,我们有:

∫ 0 3 ( x 3 − 6 x ) d x = [ x 4 4 − 6 ⋅ x 2 2 ] 0 3 = ( 1 4 ⋅ 3 4 − 3 ⋅ 3 2 ) − ( 1 4 ⋅ 0 4 − 3 ⋅ 0 2 ) = 81 4 − 27 − 0 + 0 = − 6.75 \begin{align*} \int_{0}^{3} (x^3 - 6x) dx &= \left[ \frac{x^4}{4} - 6 \cdot \frac{x^2}{2} \right]_{0}^{3} \\ &= \left( \frac{1}{4} \cdot 3^4 - 3 \cdot 3^2 \right) - \left( \frac{1}{4} \cdot 0^4 - 3 \cdot 0^2 \right) \\ &= \frac{81}{4} - 27 - 0 + 0 = -6.75 \end{align*} 03(x36x)dx=[4x462x2]03=(4134332)(4104302)=481270+0=6.75

例4 求解: ∫ 0 12 ( x − 12 sin ⁡ x ) d x \int_{0}^{12} \left( x - 12 \sin x \right) dx 012(x12sinx)dx.

基本定理给出:

∫ 0 12 ( x − 12 sin ⁡ x ) d x = [ x 2 2 − 12 ( − cos ⁡ x ) ] 0 12 = 1 2 ( 12 ) 2 + 12 ( cos ⁡ 12 − cos ⁡ 0 ) = 72 + 12 cos ⁡ 12 − 12 = 60 + 12 cos ⁡ 12 \begin{align*} \int_{0}^{12} \left( x - 12 \sin x \right) dx &= \left[ \frac{x^2}{2} - 12(-\cos x) \right]_{0}^{12} \\ &= \frac{1}{2}(12)^2 + 12(\cos 12 - \cos 0) \\ &= 72 + 12 \cos 12 - 12 \\ &= 60 + 12 \cos 12 \end{align*} 012(x12sinx)dx=[2x212(cosx)]012=21(12)2+12(cos12cos0)=72+12cos1212=60+12cos12

这是积分的精确值。如果需要小数近似,我们可以使用计算器来近似计算 cos ⁡ 12 \cos 12 cos12。这样我们得到:

∫ 0 12 ( x − 12 sin ⁡ x ) d x ≈ 70.1262 \int_{0}^{12} \left( x - 12 \sin x \right) dx \approx 70.1262 012(x12sinx)dx70.1262

在这里插入图片描述

例5 计算: ∫ 1 9 2 t 2 + t 2 t − 1 t 2 d t \int_{1}^{9} \frac{2t^2 + t^2\sqrt{t} - 1}{t^2} dt 19t22t2+t2t 1dt.

首先我们需要通过进行除法,将被积函数写成一个更简单的形式:

∫ 1 9 2 t 2 + t 2 t − 1 t 2 d t = ∫ 1 9 ( 2 + t 1 / 2 − t − 2 ) d t = [ 2 t + t 3 / 2 3 2 − t − 1 − 1 ] 1 9 = [ 2 t + 2 3 t 3 / 2 + 1 t ] 1 9 = ( 2 ⋅ 9 + 2 3 ⋅ 9 3 / 2 + 1 9 ) − ( 2 ⋅ 1 + 2 3 ⋅ 1 3 / 2 + 1 1 ) = 18 + 18 + 1 9 − 2 − 2 3 − 1 = 32 4 9 \begin{align*} \int_{1}^{9} \frac{2t^2 + t^2\sqrt{t} - 1}{t^2} dt &= \int_{1}^{9} \left(2 + t^{1/2} - t^{-2}\right) dt \\ &= \left[ 2t + \frac{t^{3/2}}{\frac{3}{2}} - \frac{t^{-1}}{-1} \right]_{1}^{9} = \left[ 2t + \frac{2}{3}t^{3/2} + \frac{1}{t} \right]_{1}^{9} \\ &= \left(2 \cdot 9 + \frac{2}{3} \cdot 9^{3/2} + \frac{1}{9}\right) - \left(2 \cdot 1 + \frac{2}{3} \cdot 1^{3/2} + \frac{1}{1}\right) \\ &= 18 + 18 + \frac{1}{9} - 2 - \frac{2}{3} - 1 = 32 \frac{4}{9} \end{align*} 19t22t2+t2t 1dt=19(2+t1/2t2)dt=[2t+23t3/21t1]19=[2t+32t3/2+t1]19=(29+3293/2+91)(21+3213/2+11)=18+18+912321=3294

应用

基本定理的第2部分表明,如果函数 f f f 在区间 [ a , b ] [a, b] [a,b] 上是连续的,那么:

∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b} f(x) dx = F(b) - F(a) abf(x)dx=F(b)F(a)

其中 F F F f f f 的任意一个反导数。这意味着 F ′ = f F' = f F=f,因此该方程可以重新写为:

∫ a b F ′ ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b} F'(x) dx = F(b) - F(a) abF(x)dx=F(b)F(a)

我们知道 F ′ ( x ) F'(x) F(x) 表示 y = F ( x ) y = F(x) y=F(x) 关于 x x x 的变化率,而 F ( b ) − F ( a ) F(b) - F(a) F(b)F(a) 是当 x x x a a a 变化到 b b b y y y 的变化量。(注意, y y y 可能会先增加,然后减少,再增加。尽管 y y y 可能在两个方向上都发生变化, F ( b ) − F ( a ) F(b) - F(a) F(b)F(a) 表示 y y y净变化。)因此我们可以用如下语言重新表述基本定理第二部分(FTC2):

净变化定理

变化率的积分是净变化:
∫ a b F ′ ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b} F'(x) dx = F(b) - F(a) abF(x)dx=F(b)F(a)

这一原理可以应用于我们在第2.7节中讨论过的自然科学和社会科学中的所有变化率。以下是几个实例:

  • 如果 V ( t ) V(t) V(t) 是某一时刻水库中的水量,那么它的导数 V ′ ( t ) V'(t) V(t) 是水在时刻 t t t 流入水库的速度。因此:
    ∫ t 1 t 2 V ′ ( t ) d t = V ( t 2 ) − V ( t 1 ) \int_{t_1}^{t_2} V'(t) dt = V(t_2) - V(t_1) t1t2V(t)dt=V(t2)V(t1)
    表示在时间 t 1 t_1 t1 t 2 t_2 t2 之间水库中水量的变化。

  • 如果 [ C ] ( t ) [C](t) [C](t) 是某一时刻化学反应产物的浓度,那么反应速率是导数 d [ C ] d t \frac{d[C]}{dt} dtd[C]。因此:
    ∫ t 1 t 2 d [ C ] d t d t = [ C ] ( t 2 ) − [ C ] ( t 1 ) \int_{t_1}^{t_2} \frac{d[C]}{dt} dt = [C](t_2) - [C](t_1) t1t2dtd[C]dt=[C](t2)[C](t1)
    表示从时间 t 1 t_1 t1 到时间 t 2 t_2 t2 浓度 C C C 的变化。

  • 如果从左端到点 x x x 的杆的质量是 m ( x ) m(x) m(x),那么线密度是 ρ ( x ) = m ′ ( x ) \rho(x) = m'(x) ρ(x)=m(x)。所以
    ∫ a b ρ ( x ) d x = m ( b ) − m ( a ) \int_{a}^{b} \rho(x) dx = m(b) - m(a) abρ(x)dx=m(b)m(a)
    表示在 x = a x = a x=a x = b x = b x=b 之间的杆段的质量。

  • 如果种群的增长速率是 d n d t \frac{dn}{dt} dtdn,那么
    ∫ t 1 t 2 d n d t d t = n ( t 2 ) − n ( t 1 ) \int_{t_1}^{t_2} \frac{dn}{dt} dt = n(t_2) - n(t_1) t1t2dtdndt=n(t2)n(t1)
    表示从时间 t 1 t_1 t1 到时间 t 2 t_2 t2 的种群净变化。(当出生率增加而死亡率减少时,种群增加。净变化同时考虑了出生和死亡。)

  • 如果 C ( x ) C(x) C(x) 是生产 x x x 单位商品的成本,那么边际成本是导数 C ′ ( x ) C'(x) C(x)。因此
    ∫ x 1 x 2 C ′ ( x ) d x = C ( x 2 ) − C ( x 1 ) \int_{x_1}^{x_2} C'(x) dx = C(x_2) - C(x_1) x1x2C(x)dx=C(x2)C(x1)
    表示当生产从 x 1 x_1 x1 单位增加到 x 2 x_2 x2 单位时成本的增加。

  • 如果一个物体沿直线运动,其位置函数为 s ( t ) s(t) s(t),则其速度为 v ( t ) = s ′ ( t ) v(t) = s'(t) v(t)=s(t),所以
    ∫ t 1 t 2 v ( t ) d t = s ( t 2 ) − s ( t 1 ) \int_{t_1}^{t_2} v(t) dt = s(t_2) - s(t_1) t1t2v(t)dt=s(t2)s(t1)
    表示在时间 t 1 t_1 t1 t 2 t_2 t2 之间,粒子的净位置变化,或位移。(在4.1节中,我们猜测当物体在正方向运动时,这是正确的,但现在我们已经证明它总是正确的。)

  • 如果我们想计算物体在该时间间隔内行驶的距离,我们必须考虑 v ( t ) ≥ 0 v(t) \geq 0 v(t)0(粒子向右移动)和 v ( t ) ≤ 0 v(t) \leq 0 v(t)0(粒子向左移动)的时间区间。在这两种情况下,距离都是通过对速度的绝对值 ∣ v ( t ) ∣ |v(t)| v(t) 进行积分来计算的。因此:

∫ t 1 t 2 ∣ v ( t ) ∣ d t = 总路程 \int_{t_1}^{t_2} |v(t)| dt = \text{总路程} t1t2v(t)dt=总路程

图3展示了如何通过速度曲线下的面积来解释位移和行驶的距离。
在这里插入图片描述
位移 = ∫ t 1 t 2 v ( t ) d t = A 1 − A 2 + A 3 \text{位移} = \int_{t_1}^{t_2} v(t) dt = A_1 - A_2 + A_3 位移=t1t2v(t)dt=A1A2+A3

距离 = ∫ t 1 t 2 ∣ v ( t ) ∣ d t = A 1 + A 2 + A 3 \text{距离} = \int_{t_1}^{t_2} |v(t)| dt = A_1 + A_2 + A_3 距离=t1t2v(t)dt=A1+A2+A3

  • 物体的加速度是 a ( t ) = v ′ ( t ) a(t) = v'(t) a(t)=v(t),所以:
    ∫ t 1 t 2 a ( t ) d t = v ( t 2 ) − v ( t 1 ) \int_{t_1}^{t_2} a(t) dt = v(t_2) - v(t_1) t1t2a(t)dt=v(t2)v(t1)

表示在时间 t 1 t_1 t1 t 2 t_2 t2 之间速度的变化。

例6 一个粒子沿直线运动,使得在时间 t t t 时它的速度为 v ( t ) = t 2 − t − 6 v(t) = t^2 - t - 6 v(t)=t2t6(以米/秒为单位)。
(a) 求粒子在时间区间 1 ≤ t ≤ 4 1 \leq t \leq 4 1t4 内的位移。
(b) 求在此时间段内粒子行驶的距离。

解 解
(a) 根据公式,位移为:

s ( 4 ) − s ( 1 ) = ∫ 1 4 v ( t ) d t = ∫ 1 4 ( t 2 − t − 6 ) d t = [ t 3 3 − t 2 2 − 6 t ] 1 4 = [ 64 3 − 8 − 24 ] − [ 1 3 − 1 2 − 6 ] = − 9 2 \begin{align*} s(4) - s(1) &= \int_{1}^{4} v(t) dt = \int_{1}^{4} (t^2 - t - 6) dt \\ &= \left[ \frac{t^3}{3} - \frac{t^2}{2} - 6t \right]_{1}^{4} \\ &= \left[ \frac{64}{3} - 8 - 24 \right] - \left[ \frac{1}{3} - \frac{1}{2} - 6 \right] = -\frac{9}{2} \end{align*} s(4)s(1)=14v(t)dt=14(t2t6)dt=[3t32t26t]14=[364824][31216]=29

这意味着粒子向左移动了4.5米。

(b) 注意, v ( t ) = t 2 − t − 6 = ( t − 3 ) ( t + 2 ) v(t) = t^2 - t - 6 = (t - 3)(t + 2) v(t)=t2t6=(t3)(t+2),因此 v ( t ) ≤ 0 v(t) \leq 0 v(t)0 在区间 [ 1 , 3 ] [1, 3] [1,3] 上成立,而 v ( t ) ≥ 0 v(t) \geq 0 v(t)0 [ 3 , 4 ] [3, 4] [3,4] 上成立。因此,根据公式3,行驶的距离为:

∫ 1 4 ∣ v ( t ) ∣ d t = ∫ 1 3 [ − v ( t ) ] d t + ∫ 3 4 v ( t ) d t = ∫ 1 3 ( − t 2 + t + 6 ) d t + ∫ 3 4 ( t 2 − t − 6 ) d t = [ − t 3 3 + t 2 2 + 6 t ] 1 3 + [ t 3 3 − t 2 2 − 6 t ] 3 4 = 61 6 ≈ 10.17 米 \begin{align*} \int_{1}^{4} |v(t)| dt &= \int_{1}^{3} [-v(t)] dt + \int_{3}^{4} v(t) dt\\ &= \int_{1}^{3} (-t^2 + t + 6) dt + \int_{3}^{4} (t^2 - t - 6) dt\\ &= \left[ -\frac{t^3}{3} + \frac{t^2}{2} + 6t \right]_{1}^{3} + \left[ \frac{t^3}{3} - \frac{t^2}{2} - 6t \right]_{3}^{4}\\ &= \frac{61}{6} \approx 10.17 \text{米}\\ \end{align*} 14v(t)dt=13[v(t)]dt+34v(t)dt=13(t2+t+6)dt+34(t2t6)dt=[3t3+2t2+6t]13+[3t32t26t]34=66110.17

例7

图4显示了旧金山在9月某一天的用电量( P P P 的单位是兆瓦, t t t 的单位是从午夜开始计算的小时)。估算这一天的用电量。
在这里插入图片描述

功率是能量变化率: P ( t ) = E ′ ( t ) P(t) = E'(t) P(t)=E(t)。因此,根据净变化定理,

∫ 0 24 P ( t ) d t = ∫ 0 24 E ′ ( t ) d t = E ( 24 ) − E ( 0 ) \int_{0}^{24} P(t) dt = \int_{0}^{24} E'(t) dt = E(24) - E(0) 024P(t)dt=024E(t)dt=E(24)E(0)

是这一天使用的总能量。我们使用中点法则进行估算,取12个子区间, Δ t = 2 \Delta t = 2 Δt=2

∫ 0 24 P ( t ) d t ≈ [ P ( 1 ) + P ( 3 ) + P ( 5 ) + ⋯ + P ( 21 ) + P ( 23 ) ] Δ t ≈ ( 440 + 400 + 420 + 620 + 790 + 840 + 850 + 840 + 810 + 690 + 670 + 550 ) ( 2 ) = 15 , 840 \begin{align*} \int_{0}^{24} P(t) dt &\approx [P(1) + P(3) + P(5) + \cdots + P(21) + P(23)]\Delta t\\ &\approx (440 + 400 + 420 + 620 + 790 + 840 + 850 + 840 + 810 + 690 + 670 + 550)(2)\\ &= 15,840 \end{align*} 024P(t)dt[P(1)+P(3)+P(5)++P(21)+P(23)]Δt(440+400+420+620+790+840+850+840+810+690+670+550)(2)=15,840

这一天的用电量大约为15,840兆瓦时。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值