我们在 4.3 节中看到,微积分基本定理的第二部分为求解函数的定积分提供了一种非常强大的方法,前提是我们能够找到该函数的一个反导数。在本节中,我们将介绍反导数的记号,回顾反导数的公式,并用它们来计算定积分。我们还重新表述了微积分基本定理的第二部分(FTC2),使其更容易应用于科学和工程问题。
不定积分
基本定理的两个部分都建立了反导数和定积分之间的联系。第1部分指出,如果函数 f f f 是连续的,那么 ∫ a x f ( t ) d t \int_{a}^{x} f(t) dt ∫axf(t)dt 是 f f f 的一个反导数。第2部分则表明, ∫ a b f ( x ) d x \int_{a}^{b} f(x) dx ∫abf(x)dx 可以通过计算 F ( b ) − F ( a ) F(b) - F(a) F(b)−F(a) 来求得,其中 F F F 是 f f f 的一个反导数。
我们需要一个方便的符号来表示反导数,使它们易于使用。由于基本定理给出了反导数和积分之间的关系,符号 ∫ f ( x ) d x \int f(x) dx ∫f(x)dx 传统上用于表示 f f f 的反导数,并称为不定积分。因此:
∫ f ( x ) d x = F ( x ) 表示 F ′ ( x ) = f ( x ) \int f(x) dx = F(x) \text{表示} F'(x) = f(x) ∫f(x)dx=F(x)表示F′(x)=f(x)。
例如,我们可以写:
∫ x 2 d x = x 3 3 + C \int x^2 dx = \frac{x^3}{3} + C ∫x2dx=3x3+C
因为
d d x ( x 3 3 + C ) = x 2 \frac{d}{dx} \left( \frac{x^3}{3} + C \right) = x^2 dxd(3x3+C)=x2
因此,我们可以将不定积分视为表示一个函数的整个函数族(对于常数 C C C 的每一个值,对应一个反导数)。
你应该仔细区分定积分和不定积分。定积分 ∫ a b f ( x ) d x \int_{a}^{b} f(x) dx ∫abf(x)dx 是一个数值,而不定积分 ∫ f ( x ) d x \int f(x) dx ∫f(x)dx 是一个函数(或函数族)。它们之间的联系在基本定理的第2部分中给出:如果 f f f 在区间 [ a , b ] [a, b] [a,b] 上是连续的,那么:
∫ a b f ( x ) d x = [ ∫ f ( x ) d x ] a b \int_{a}^{b} f(x) dx = \left[ \int f(x) dx \right]_{a}^{b} ∫abf(x)dx=[∫f(x)dx]ab
基本定理的有效性依赖于我们是否有足够的函数反导数。因此,我们重述第3.9节中的反导数公式表,并添加了一些与不定积分相关的公式。通过对右侧的函数求导并获得被积函数,可以验证任何公式。例如:
∫ sec 2 x d x = tan x + C \int \sec^2 x dx = \tan x + C ∫sec2xdx=tanx+C
因为
d d x ( tan x + C ) = sec 2 x \frac{d}{dx} (\tan x + C) = \sec^2 x dxd(tanx+C)=sec2x
公式列表如下:
请回忆定理3.9.1:在给定区间上,最一般的反导数是通过在特定反导数上加上一个常数得到的。我们采纳的约定是,当给出一个不定积分公式时,它仅在某个区间上有效。因此,我们写出:
∫ 1 x 2 d x = − 1 x + C \int \frac{1}{x^2} dx = -\frac{1}{x} + C ∫x21dx=−x1+C
理解为该公式在区间 ( 0 , ∞ ) (0, \infty) (0,∞) 或 ( − ∞ , 0 ) (-\infty, 0) (−∞,0) 上有效。这与函数 f ( x ) = 1 x 2 , x ≠ 0 f(x) = \frac{1}{x^2}, x \neq 0 f(x)=x21,x=0 的最一般反导数尽管是:
F ( x ) = { − 1 x + C 1 , 如果 x < 0 − 1 x + C 2 , 如果 x > 0 F(x) = \begin{cases} -\frac{1}{x} + C_1, & \text{如果 } x < 0 \\ -\frac{1}{x} + C_2, & \text{如果 } x > 0 \end{cases} F(x)={ −x1+C1,−x1+C2,如果 x<0如果 x>0
的事实是一致的。
例1 求一般的不定积分:
∫ ( 10 x 4 − 2 sec 2 x ) d x \int (10x^4 - 2\sec^2 x) dx ∫(10x4−2sec2x)dx
解
根据我们的约定和表1,我们有:
∫ ( 10 x 4 − 2 sec 2 x ) d x = 10 ∫ x 4 d x − 2 ∫ sec 2 x d x \int (10x^4 - 2\sec^2 x) dx = 10 \int x^4 dx - 2 \int \sec^2 x dx ∫(10x4−2sec2x)dx=10∫x4dx−2∫sec2xdx
= 10 x 5 5 − 2 tan x + C = 10 \frac{x^5}{5} - 2 \tan x + C =105x5−2tanx+C
= 2 x 5 − 2 tan x + C = 2x^5 - 2 \tan x + C =2x5−2tanx+C
你应该通过对结果求导来验证该答案。
例2 计算: ∫ cos θ sin 2 θ d θ \int \frac{\cos \theta}{\sin^2 \theta} d\theta ∫sin2θcosθdθ.
解
这个不定积分在表1中无法立即找到,因此我们使用三角恒等式在积分前对函数进行重新表达:
∫ cos θ sin 2 θ d θ = ∫ ( 1 sin θ ) ( cos θ sin θ ) d θ = ∫ csc θ cot θ d θ = − csc θ + C \begin{align*} \int \frac{\cos \theta}{\sin^2 \theta} d\theta &= \int \left( \frac{1}{\sin \theta} \right) \le