深入了解Transformer:从编码器到解码器的神经网络之旅
0.引言
自2017年问世以来,Transformer模型在自然语言处理(NLP)领域引发了一场革命。它的独特设计和高效性能使其成为了解决复杂语言任务的关键工具。
1.Transformer的核心构成
(1)自注意力机制
Transformer的核心在于自注意力机制。它允许模型在处理每个词时考虑句子中的所有其他词,从而有效捕获长距离依赖关系。这是通过计算查询(Q)、键(K)和值(V)之间的关系实现的,其中注意力分数是通过以下公式计算得出的:
Attention(Q, K, V) = softmax ( QK T d k ) V \text{Attention(Q, K, V)} = \text{softmax}\left(\frac{\text{QK}^T}{\sqrt{d_k}}\right)\text{V} Attention(Q, K, V)=softmax(dkQKT)V
(2)多头注意力
Transformer采用多头注意力机制,将注意力分散到不同的表示子空间,允许模型同时从多个角度理解信息。这种机制通过以下方式实现:
MultiHead(Q, K, V) = Concat ( head 1 , . . . , head h ) W O \text{MultiHead(Q, K, V)} = \text{Concat}(\text{head}_1, ..., \text{head}_h)\text{W}^O MultiHead(Q, K, V)=