深入了解Transformer——从编码器到解码器

Transformer模型自2017年推出以来,在自然语言处理领域引发了革命。本文深入探讨了其核心构成:自注意力机制及多头注意力,并介绍了编码器与解码器的工作原理。此外,还分析了Transformer的特点与优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深入了解Transformer:从编码器到解码器的神经网络之旅

0.引言

自2017年问世以来,Transformer模型在自然语言处理(NLP)领域引发了一场革命。它的独特设计和高效性能使其成为了解决复杂语言任务的关键工具。

1.Transformer的核心构成

(1)自注意力机制

Transformer的核心在于自注意力机制。它允许模型在处理每个词时考虑句子中的所有其他词,从而有效捕获长距离依赖关系。这是通过计算查询(Q)、键(K)和值(V)之间的关系实现的,其中注意力分数是通过以下公式计算得出的:
Attention(Q, K, V) = softmax ( QK T d k ) V \text{Attention(Q, K, V)} = \text{softmax}\left(\frac{\text{QK}^T}{\sqrt{d_k}}\right)\text{V} Attention(Q, K, V)=softmax(dk QKT)V

(2)多头注意力

Transformer采用多头注意力机制,将注意力分散到不同的表示子空间,允许模型同时从多个角度理解信息。这种机制通过以下方式实现:
MultiHead(Q, K, V) = Concat ( head 1 , . . . , head h ) W O \text{MultiHead(Q, K, V)} = \text{Concat}(\text{head}_1, ..., \text{head}_h)\text{W}^O MultiHead(Q, K, V)=

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机智的小神仙儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值