SLAM相关最新最全算法总结(正在持续更新)

SLAM相关最新最全算法总结

Lidar SLAM & LIO(LiDAR Inertial Odometry)

Gmapping

  • 发布时间:2005年
  • 论文标题:Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling
  • 开源地址:https://github.com/ros-perception/slam_gmapping
  • 关键词:粒子滤波、2D LiDAR、ROS
  • 点评:经典的粒子滤波SLAM算法,完全基于ROS,适合初学者上手

Cartographer
在这里插入图片描述

  • 发布时间:2016
  • 论文标题: Real-Time Loop Closure in 2D LIDAR SLAM
  • 开源地址:https://github.com/cartographer-project/cartographer
  • 关键词:子地图、图优化、回环
  • 点评:Google 开源的第一个 ROS 系统支持的 2D 和 3D SLAM库,不知道养活了多少扫地机器人公司。。。

LOAM(https://github.com/laboshinl/loam_velodyne)

  • 发布时间:
  • 论文标题:
  • 开源地址:
  • 关键词:
  • 点评:

ALOAM(https://github.com/HKUST-Aerial-Robotics/A-LOAM)

  • 发布时间:
  • 论文标题:
  • 开源地址:
  • 关键词:
  • 点评:

LOAM-Livox(https://github.com/hku-mars/loam_livox)

  • 发布时间:
  • 论文标题:
  • 开源地址:
  • 关键词:
  • 点评:

FLOAM(https://github.com/wh200720041/floam)

  • 发布时间:
  • 论文标题:
  • 开源地址:
  • 关键词:
  • 点评:

LeGO-LOAM(https://github.com/RobustFieldAutonomyLab/LeGO-LOAM)

  • 发布时间:
  • 论文标题:
  • 开源地址:
  • 关键词:
  • 点评:

hdl_graph_slam
(https://github.com/koide3/hdl_graph_slam)
在这里插入图片描述

SC-LeGO-LOAM(https://github.com/irapkaist/SC-LeGO-LOAM)

LIO-SAM(https://github.com/TixiaoShan/LIO-SAM)

LILI-OM(https://github.com/KIT-ISAS/lili-om)

LINS(https://github.com/ChaoqinRobotics/LINS—LiDAR-inertial-SLAM)

FAST-LIO/FAST-LIO2(https://github.com/hku-mars/FAST_LIO)

Point-LIO(https://github.com/hku-mars/Point-LIO.git)

Visual SLAM & VIO((Visual Inertial Odometry)

SVO(https://github.com/uzh-rpg/rpg_svo)

SVO2.0(https://github.com/uzh-rpg/rpg_svo_pro_open)

DynaSLAM(https://github.com/BertaBescos/DynaSLAM)

ORB-SLAM(https://github.com/raulmur/ORB_SLAM)

ORB-SLAM2(https://github.com/raulmur/ORB_SLAM2)

ORB-SLAM3(https://github.com/UZ-SLAMLab/ORB_SLAM3)

OpenVINS(https://github.com/rpng/open_vins)

VDO-SLAM(https://github.com/halajun/VDO_SLAM)

DROID-SLAM(https://github.com/princeton-vl/DROID-SLAM)

OKVIS(https://github.com/ethz-asl/okvis)

Cube-SLAM(https://github.com/shichaoy/cube_slam)

QuadricSLAM(https://github.com/qcr/quadricslam)

VINS-mono(https://github.com/HKUST-Aerial-Robotics/VINS-Mono)

VINS-Fusion(https://github.com/HKUST-Aerial-Robotics/VINS-Fusion)

EVO(https://github.com/uzh-rpg/rpg_dvs_evo_open)

ElasticFusion(https://github.com/mp3guy/ElasticFusion)

Multi-sensor Information Fusion

R2LIVE(https://github.com/hku-mars/r2live)

R3LIVE/R3LIVE++(https://github.com/hku-mars/r3live)

FAST-LIVO(https://github.com/hku-mars/FAST-LIVO)

LVI-SAM(https://github.com/TixiaoShan/LVI-SAM)

GVINS(https://github.com/HKUST-Aerial-Robotics/GVINS)

IC-GVINS(https://github.com/i2Nav-WHU/IC-GVINS)

Collaborative Visual-Inertial SLAM

COVINS(https://github.com/VIS4ROB-lab/covins)

D2SLAM(https://github.com/HKUST-Aerial-Robotics/D2SLAM)

pose graph optimizer

ceres-solver(http://ceres-solver.org/)

g2o(https://github.com/RainerKuemmerle/g2o)

gtsam(https://gtsam.org/)

Loop closure

DBoW2(https://github.com/dorian3d/DBoW2)

NetVLAD(https://github.com/Relja/netvlad)

Scan-Context(https://github.com/irapkaist/scancontext)

LiDAR-Iris(https://github.com/BigMoWangying/LiDAR-Iris)

M2DP(https://github.com/LiHeUA/M2DP)

Intensity Scan Context(https://github.com/wh200720041/iscloam)

OverlapNet(https://github.com/PRBonn/OverlapNet)

Scan Matching

NDT, ICP, Generalized-ICP(GICP)

Feature Detection & Feature Matching

SuperPoint (https://github.com/rpautrat/SuperPoint)

LoFTR(https://github.com/zju3dv/LoFTR)

SuperGlue(https://github.com/magicleap/SuperGluePretrainedNetwork)

LightGlue(https://github.com/cvg/LightGlue)

Structure from motion

COLOMAP(https://github.com/colmap/colmap)

pixel-perfect-sfm(https://github.com/cvg/pixel-perfect-sfm)

3D Reconstruction

NeRF(https://github.com/bmild/nerf)

Tools

rpg_trajectory_evaluation(https://github.com/uzh-rpg/rpg_trajectory_evaluation)

evo(https://github.com/MichaelGrupp/evo)

ROS

rosbag2_bag_v2(https://github.com/ros2/rosbag2_bag_v2)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值