文章目录
为什么要采用随机化验证策略?
随机化策略指的是:激励随机化,配置随机化等。
1)、对于较大的验证空间,随机化策略可以使验证有条件趋于量化流程,达到以时间换空间的效果。
2)、使用随机化产生激励,可以很容易的在短时间内产生大量的随机激励,随机激励可以达到我们工程师可能会忽略的地方,相对于固定的激励(难以覆盖较大的可激励空间),随机化的激励可以用更为抽象的数据包传输,简化数据场景,更能验证出DUT可能隐藏的错误,提高验证的完备性
所谓配置随机化指的是,测试平台配置的随机化。可配置的测试平台可以为DUT创造出多种模拟的运行环境,而且这种模拟的环境越多越好。比如DUT具有一个I2C Master接口,那么测试平台应该具有提供1个到多个Master和slave的能力。
其实之所以需要随机化是因为工程师的思维总是具有局限性,不可能想到所有的测试情况。就算想到了所有的情况,那么也不可能付诸实践。比如要测试一个32位的加法器,如果要全部覆盖则需要2的33次方个定向的testcase。这是无论如何也做不到的。如果使用大量的随机测试,只要部分验证通过,我们就可以认为验证通过。
一、随机变量类型
随机化变量以及随机约束都只能在类class中声明
。
1.1.rand与randc随机变量
1)、使用关键字rand声明随机变量,随机变量的值在指定范围内均匀分布;如果不添加约束,随机变量可以是指定有效范围内的任何值。
rand bit[7:0] y; //y为8bit无符号整形数,取值范围:0~255, 每个数出现的概率都为1/256
2)、使用关键字randc声明周期性随机变量,取值按照声明的有效范围周期性出现,且数据类型只可以是bit或者enum型。
randc bit[1:0] y; //y为2bit无符号整形数,取值范围:0~3, 在一个周期内必然会产生0、1、2、3四个数,顺序不定
1.2.constraint指定约束范围
使用关键字constraint来添加约束语句块,指定随机变量的取值范围,或者各个变量之间的相互关系。
约束块不像是自上而下执行的程序性代码,它们是声明性代码,是并行的,所有的约束表达式同时有效。
二、随机化约束操作
2.1.关系操作符约束(>、<、=、>=、<=)
2.2.范围操作符约束(inside)
2.3.权重分布约束(dist)
2.4.条件约束(if-else; ->)
->操作符可以产生和case操作符类似效果的语句块,可以用于枚举类型的表达式。->与if-else约束可以相互转化。
2.5.双向约束
约束块不像是自上而下执行的程序性代码,它们是声明性代码,是并行的,所有的约束表达式同时有效。如果你用inside操作符约束变量的取值范围为[10:50],然后用另一个约束表达式约束变量必须大于20,SV对这两个约束同时求解,最终限定变量的范围是21~50.
SV的约束是双向的,这代表它会同时计算所有随机变量的约束,增加或删除任何一个约束都有可能对随机变量的取值产生影响。看下例:
2.6.Onehot约束
对于多bit变量,有时需要所有bit位都有toggle以保证cover所有场景,这就要求约束相关变量为onehot类型,SV提供了位向量系统函数$countones函数来统计变量中1的个数,用户可以通过施加约束来实现该操作。
class onehot_const;
rand bit[31:0] dvfs_freq_vote_en;
constraint fv_en_onehot_c{
$countones(dvfs_freq_vote_en[31:0]) == 1;
}
endclass
此外,SV还提供了其它系统函数,如$countbits(expression, control_bit {, control_bit})、$onehot (expression)、$onehot0(expression)、$isunknown (expression),其作用如下:
- $countones(expression):统计expr中1的个数,等价于$conutbits(expression, '1),返回统计值;
- $countbits(expression, control_bit {, control_bit}) : 统计expr中指定的control_bit(0/1/x/z)的数量,返回统计值;
- $onehot (expression) :判断expr是否为onehot类型,如果是,则返回真,否者返回假;
- $onehot0(expression) :判断expr中至少有一位为高,如果是,则返回真,否者返回假;
- $isunknown (expression):判断某个变量是否含有x态或者z态,如果有,则返回真,否者返回假。
2.7.内嵌约束randomize ( )with{ }
随着测试的进行,面对的约束越来越多,它们会相互作用,最终产生难以预测的结果;用来使能和禁止这些约束的代码也会增加测试的复杂度。
很多测试只会在代码的一个地方随机化对象,SV允许使用randomise( )with{}
来增加额外的约束,这和在类里面增加约束是等效的。看下例:
注意:在with{}语句里,SV使用了类的作用域,所以在上例中使用了addr变量,而不是t.addr。
在使用randomise()with语句时常犯的错误就是使用()而不是{}内嵌的约束。记住,约束块应该使用{},内嵌约束也应该使用{},{}用于声明性的代码。
2.8.solve…before约束——改变数值出现的机率(见下一章)
三、启动随机化——randomize( )函数
- 调用randomize( )函数可以为对象中的所有随机变量赋值,随机变量的值要符合约束;
- randomize( )函数成功时,返回1,失败时返回0。如果随机变量没有添加约束,那么产生的值是有效范围内的任何值。
四、关闭或打开随机变量与约束——rand_mode( )和constraint_mode( )
- constraint_mode()函数打开或关闭约束,是SV内建的类,非激活状态下的约束在调用randomize()函数时将失效;
- 所有的约束初始状态都处于激活状态;
值 | 含义 | 描述 |
---|---|---|
0 | OFF | 将约束语句块 设为非激活态(INACTIVE),constraint约束将不起作用 |
1 | ON | 将约束语句块 设为激活态(ACTIVE),constraint约束将起作用 |
class packet();
rand int src, dst;
constraint filter {
src>2*dst;}
endclass
function int toggle_rand(Packet p);
if(p.filter.constraint_mode() == 1)
p.filter.