2018年03月09日

马克思和近代史很认真,然后派我上去讲课。。。。。

           

     

为了完成这个任务,你需要使用数据分析和可视化工具,例如Python中的pandas库用于处理Excel数据,matplotlib或seaborn库用于创建条形图。以下是步骤概述: 1. **加载数据**: 首先,使用`pandas`的`read_excel`函数读取"data.xlsx"文件中名为"第一题"的工作表。 ```python import pandas as pd df = pd.read_excel('data.xlsx', sheet_name='第一题') ``` 2. **数据筛选**: 确保数据集中包含了201893、95至7的数据。你可以使用期列筛选出这段时间的数据。 ```python date_mask = (df['期'] >= '2018-09-03') & (df['期'] <= '2018-09-07') filtered_data = df[date_mask] ``` 3. **计算涨跌幅**: 创建一个新的列来表示涨跌幅,通常这是通过当前价格减去前一天的价格然后除以前一天价格计算得出的百分比。 ```python filtered_data['涨跌幅'] = filtered_data['收盘价'].pct_change() ``` 4. **绘制条形图**: 使用`matplotlib`或`seaborn`中的`barplot`或`catplot`函数绘制22子图的条形图。这里假设你有22种不同的股票。 ```python import matplotlib.pyplot as plt # 假设stock_codes是一个包含22个股票代码的列表 fig, axs = plt.subplots(11, 2, figsize=(15, 22), sharey=True) for i, ax in enumerate(axs.flat): stock_code = stock_codes[i] ax.bar(filtered_data['期'], filtered_data[f'{stock_code}_涨跌幅']) ax.set_title(stock_code) plt.tight_layout() plt.savefig('图1.png') ``` 5. **显示结果**: 最后保存并显示图表。 注意:实际操作时需要检查文件路径、期格式以及股票数据的具体列名是否正确。如果数据集中没有直接给出每天的收盘价,可能还需要进一步处理。此外,上述代码假设了你的数据结构和所需子图的数量。如果你的实际情况不同,可能需要相应调整代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值