基于改进禁忌搜索算法求解TSP问题(Matlab代码实现)

目录

1 概述

2 改进禁忌搜索算法

3 运行结果

4 参考文献

5 Matlab代码实现


1 概述

当城市数量较少时,理论上可以通过穷举法来列举出最优方案,然而当城市数量较多时,所有路线之和将呈指数增加,因此求解过程非常复杂而且很难找到最优解。目前,求解TSP问题的算法大致可划分为两类,分别是确定性算法和智能优化算法5。确定性算法通常是指能利用数学公式解出具体的某个数值,且该结果即为最优解,例如线性规划、动态规划、完全枚举等方法,然而该类算法只适用于小规模算例求解,因此,考虑到现实应用情况,在规模较大时,人们常常选择目前广受关注的智能优化算法,例如遗传算法、粒子群算法、模拟退火算法、禁忌搜索算法、免疫算法以及人工神经网络6等等。本文主要通过遗传算法和禁忌搜索算法两种算法进行混合求解,结合两种算法的优势,对TSP问题进行优化求解,提高解的质量。
TSP问题作为一个典型的组合优化问题,多年来众多学者都对其展开了深入研究,以期寻找
到一个最优算法来应用到实际生活中。由于TSP问题是一个NP难题,因此一般使用目前较为普遍的智能优化算法进行计算其最短路径,
禁忌搜索算法便是其中之一。该算法通过引入禁忌表和特赦准则来避免搜索陷入局部最优,在各个行业中均获得了广泛应用。但是,该算法也存在一定的缺陷,比如对初始解的依赖性。因此,本文为了克服该缺点,将传统的禁忌搜索算法进行了改进,借助遗传算法来对初始解进行优化,进而得到更优解。通过案例仿真表明,加入遗传算法后,实验结果有了很大的改善,得到了更优的路线方案,缩短了总旅程的距离,验证了算法改进后的有效性和可行性。

2 改进禁忌搜索算法

1986年,Fred Glover教授提出了禁忌搜索算法( TabuSearch,简称TS算法)10l,指出该算法的局部搜索能力非常强,并且也能避免算法陷入局部最优,从而找到全局最优解,是一种全局迭代寻优算法。多年来,该算法也以其灵活的记忆特性和特赦准则,受到了众多学者的青睐。
所谓禁忌,是指禁止重复操作,类似于模拟人的思维模式,如果该区域已经搜索过,则下次搜索时可以通过禁忌表来进行记录,避免重复低效搜索,但也并非完全隔绝,对于更优的解,也可以通过特赦准则对其进行释放,改善解的质量,避免遗漏。
 

3 运行结果

4 参考文献

5 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值