💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
摘要:
概率假设密度(PHD)递归在时间上传播目标的随机有限集(RFS)的后验强度。基于基本概率假设密度的(CPHD)递归是PHD递归的一种泛化,它联合传播后验强度和后验基数分布。一般来说,CPHD递归在计算上是不可行的。本文提出了在目标动态和出生过程上基于线性高斯假设的CPHD递归的封闭形式解决方案。基于这个解决方案,开发了一种有效的多目标跟踪算法。使用线性化和无迹变换技术对所提出的封闭形式递归进行非线性模型的扩展也给出了。所提出的CPHD实现不仅避开了传统方法中需要进行数据关联的需求,而且与标准PHD滤波器相比,大大提高了单个状态估计的准确性以及估计目标数量的方差。我们的实现只具有立方复杂度,但模拟结果表明与具有非多项式复杂度的标准联合概率数据关联(JPDA)滤波器相比,性能更加有利。
多目标跟踪的目标是在存在数据关联不确定性、检测不确定性和噪声的情况下,同时从一系列观测集合中估计目标的数量和它们的状态。由Mahler提出的随机有限集(RFS)方法,即有限集统计(FISST),是多目标跟踪问题的一个优雅的表述,引起了大量的研究兴趣。本质上,在任何给定时间收集的目标状态被视为一组多目标状态,相应的传感器测量的集合被视为一组多目标观测。使用RFS来建模多目标状态和观测,多目标跟踪问题可以在贝叶斯滤波框架中通过在时间上传播多目标状态的后验分布来表述。
由于多目标密度的固有组合特性以及在(无限维)多目标状态和观测空间上的多次积分,大多数实际应用中的多目标贝叶斯递归是不可行的。为了缓解这种不可行性,概率假设密度(PHD)递归被开发为对多目标贝叶斯递归的第一时刻近似。事实上,PHD递归在时间上传播目标RFS的后验强度。PHD递归具有明显的优势,它仅在单目标状态空间上运行,并且避免了数据关联。与PHD递归不可行的信念相反,[20]提出了线性高斯模型的封闭形式解决方案,[3]提出了完整的顺序蒙特卡洛(SMC)实现,并在相关的收敛结果中建立了多目标滤波器基于PHD递归后来在一系列实际问题中成功应用,例如地形车辆跟踪、雷达跟踪、图像序列的特征点跟踪、双稳态雷达跟踪和声纳图像跟踪。[19]还提出了PHD递归的新颖扩展,用于多模型,以及用于执行跟踪估计。
PHD递归仅通过一个参数(基数分布的均值)传播基数信息,因此,它有效地将基数分布近似为泊松分布。由于泊松分布的均值和方差相等,当目标数量较多时,PHD滤波器估计的基数具有相应较高的方差。在实践中,这一限制表现为对目标数量的估计不稳定。为了解决这个问题,Mahler在[24]和[25]中放宽了对目标数量的一阶假设,并推导出PHD递归的一般化,称为基数化PHD(CPHD)递归,它联合传播强度函数和基数分布(目标数量的概率分布)。关键问题是:基数信息的附加传播是否提高了多目标状态估计的准确性?这个问题的答案取决于解决CPHD递归。然而,到目前为止,还没有建立基数化PHD递归的封闭形式解决方案。
本文的关键贡献是提出了线性高斯多目标模型的基数化PHD递归的封闭形式解决方案。基于这个解决方案,我们还开发了以下内容:
- 用于在杂波中跟踪未知的时间变化目标数量的高效滤波器(第三和第四节);
- 用于在杂波中跟踪已知的固定目标数量的降低复杂度滤波器(第五节);
- 使用线性化和无迹变换技术将所提出的封闭形式递归扩展以适应非线性多目标模型(第六节)。
我们提出的多目标滤波器是[4]中描述的高斯混合PHD滤波器的一般化。尽管两种滤波器都以解析方式在时间上传播高斯混合强度,但存在两个关键区别。首先,CPHD滤波器中的强度传播方程比PHD滤波器中的要复杂得多。
📚2 运行结果
部分代码:
%% Variables preallocations for speed.
ZCLobsv = cell(nSims, nMCs); % Observation cells.
XCardTrue = zeros(nSims, nMCs); % True cardinality of multiple targets.
XCardHat = zeros(nSims, nMCs); % Target cardinality estimation.
SeqGMM = cell(nSims, nMCs); % Sequential Gaussian Mixture Model.
XCLFilter = cell(nSims, nMCs);
OSPA = zeros(nSims, nMCs); % Optimal SubPattern Assignment Metric.
Hausdorf = OSPA; % Hausdorf Metric between true RFS and Filtered RFS.
OMAT = zeros(nSims, nMCs, 2); % Optimal MAss Assignment Transfer Metric.
GMM(1).omega = 0;
GMM(1).mean = zeros(nDimX,1);
GMM(1).variance = zeros(nDimX);
%% Set the clutter cardinality and intensity distribution.
Clutters.funCardPdf = @(x) poisspdf(x,lambdac*vol); % here cardinality distribution is poisson.
Clutters.funSpatialDist = @(x) 1/vol; % the spatial distribution is uniform.
%% Initialize the progress bar.
% % if ~MATLAB_DEBUG || nMCs>1,
% % flagShowWaitbar = 1;
% % hWaitbar = waitbar(0, ['Monte Carlo Running... lambdac=', num2str(lambdac)]);
% % end
%% Monte Carlo runs...
for m=1:nMCs
% % if flagShowWaitbar
% % waitbar(m/nMCs);
% % end
k = 1;
SeqGMM{k,m} = [];
%SeqGMM{k,m} = GMM_birth;
CardDist{k,m} = ones(1,nCardMax)/nCardMax;%[ones(1,4)/4 zeros(1, nCardMax-4)];
XCLFilter{k,m} = [GMM_birth.mean];
XCardHat(k,m) = 0;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。