基于VMD-CPA-KELM-IOWAl-CSA-LSSVM碳排放的混合预测模型研究(Matlab代码实现)

 👨‍🎓个人主页:研学社的博客    

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

作为温室气体的主要成分,二氧化碳排放量的增加导致全球变暖,对人们的生活和发展产生直接而持久的负面影响。建立准确的碳排放预测模型对人类健康和生态环境保护至关重要。本文针对碳排放数据高度复杂的问题,建立基于相关积分和相关维数的奇异谱分解(SSD)、神经网络估计时间熵(NNetEn)、变分模态分解(VMD)、食虫植物算法改进的核极限学习机(CPA-KELM)、变色龙群算法改进的最小二乘支持向量机(CSA-LSSVM)等碳排放组合预测模型, 提出了诱导有序加权平均(IOWA)运算符和纠错(EC),命名为C-CSSD-NNetEn-VMD-CPA-KELM-IOWA-CSA-LSSVM-EC。​

1. VMD (Variational Mode Decomposition): 变分模态分解是一种信号处理技术,用于将信号分解成不同尺度和频率的固有模态函数(IMF)。

2. CPA (Comprehensive Particle Swarm Optimization): 综合粒子群优化是一种优化算法,通常用于寻找复杂问题的最优解。

3. KELM (Kernel Extreme Learning Machine): 核极限学习机是一种机器学习算法,它结合了极限学习机(ELM)和核方法,用于进行非线性模式识别和回归分析。

4. IOWAl (Improved Weighted AdaBoost Learning): 改进的加权AdaBoost学习是一种集成学习方法,用于提高弱分类器的性能。

5. CSA (Cuckoo Search Algorithm): 布谷鸟搜索算法是一种启发式优化算法,灵感来自布谷鸟的繁殖行为。

6. LSSVM (Least Squares Support Vector Machine): 最小二乘支持向量机是一种用于分类和回归分析的机器学习算法,它基于支持向量机(SVM)框架,使用最小二乘法来优化模型。

这些方法和模型被整合在一起,形成了一个用于碳排放混合预测的复合模型。这种综合方法的目的是提高预测精度和鲁棒性,从而更好地理解和预测碳排放的行为。

📚2 运行结果

主函数部分代码:

clc;clear;close all
%% 中国的C-CSSD分解
load SSC_China.mat
ssc_len = length(SSC);
h3 = figure('NumberTitle','on','Name','SSD分解结果');
set(h3,'position',[378,270,603,197]);
k=size(SSC,1);       %返回矩阵行数
n=round(k/2);
for i = 1:n
    subplot(n,2,2*i-1);
    ssc = SSC(i,:);
    clor = [rand rand rand];
    plot(ssc, 'Color', clor);
    title (['SSC' num2str(i)], 'Color', clor, 'BackgroundColor','none', ...,'Position',[1287.50245571136,0.410722021094829,0]
        'HorizontalAlignment','left', 'VerticalAlignment','middle');
    xlim([0 ssc_len])
    if i < n                % 前m-1个分量绘图
        set(gca,'xtick',[]) % set函数 将当前图形(gca)的x轴坐标刻度(xtick)标志为空
    end
    set(gca, 'box', 'off') % 去掉上边和右边的边框
    set(gca,'FontName','Times New Roman','fontsize', 10);% 坐标轴刻度字体大小
    set(get(gca,'XLabel'),'FontSize', 10);
    set(get(gca,'YLabel'),'FontName','Times New Roman','FontSize', 10);
    set(get(gca,'Title'),'FontSize', 10);
    set(gca,'looseInset',[0 0 0 0]) % [左,下,右,上]
end
xlabel('Sample points');
for i = n+1:k
    subplot(k-n,2,2*(i-n));
    ssc = SSC(i,:);
    clor = [rand rand rand];
    plot(ssc, 'Color', clor);
    title (['SSC' num2str(i)], 'Color', clor, 'BackgroundColor','none', ...,'Position',[1287.50245571136,0.410722021094829,0]
        'HorizontalAlignment','left', 'VerticalAlignment','middle');
    xlim([0 ssc_len])
    if i < k                % 前m-1个分量绘图
        set(gca,'xtick',[]) % set函数 将当前图形(gca)的x轴坐标刻度(xtick)标志为空
    end
    set(gca, 'box', 'off') % 去掉上边和右边的边框
    set(gca, 'YTick', [min(ssc) max(ssc)]);
     set(gca,'YTickLabel',{num2str(min(ssc),'%.1f\n'),num2str(max(ssc),'%.1f\n')}); % 设置Y轴刻度值
     set(gca,'FontName','Times New Roman','fontsize', 10);% 坐标轴刻度字体大小
    set(get(gca,'XLabel'),'FontSize', 10);
    set(get(gca,'YLabel'),'FontName','Times New Roman','FontSize', 10 );
    set(get(gca,'Title'),'FontSize', 10);
    set(gca,'looseInset',[0 0 0 0]) % [左,下,右,上]
end
xlabel('Sample points');
%% 美国的C-CSSD分解
load SSC_US.mat
ssc_len = length(SSC);
h3 = figure('NumberTitle','on','Name','SSD分解结果');
set(h3,'position',[378,270,603,197]);
k=size(SSC,1);       %返回矩阵行数
n=round(k/2);
for i = 1:n
    subplot(n,2,2*i-1);
    ssc = SSC(i,:);
    clor = [rand rand rand];
    plot(ssc, 'Color', clor);
    title (['SSC' num2str(i)], 'Color', clor, 'BackgroundColor','none', ...,'Position',[1287.50245571136,0.410722021094829,0]
        'HorizontalAlignment','left', 'VerticalAlignment','middle');
    xlim([0 ssc_len])
    if i < n                % 前m-1个分量绘图
        set(gca,'xtick',[]) % set函数 将当前图形(gca)的x轴坐标刻度(xtick)标志为空
    end
    set(gca, 'box', 'off') % 去掉上边和右边的边框
    set(gca,'FontName','Times New Roman','fontsize', 10);% 坐标轴刻度字体大小
    set(get(gca,'XLabel'),'FontSize', 10);
    set(get(gca,'YLabel'),'FontName','Times New Roman','FontSize', 10);
    set(get(gca,'Title'),'FontSize', 10);
    set(gca,'looseInset',[0 0 0 0]) % [左,下,右,上]
end
xlabel('Sample points');
for i = n+1:k
    subplot(k-n,2,2*(i-n));
    ssc = SSC(i,:);
    clor = [rand rand rand];
    plot(ssc, 'Color', clor);
    title (['SSC' num2str(i)], 'Color', clor, 'BackgroundColor','none', ...,'Position',[1287.50245571136,0.410722021094829,0]
        'HorizontalAlignment','left', 'VerticalAlignment','middle');
    xlim([0 ssc_len])
    if i < k                % 前m-1个分量绘图
        set(gca,'xtick',[]) % set函数 将当前图形(gca)的x轴坐标刻度(xtick)标志为空
    end
    set(gca, 'box', 'off') % 去掉上边和右边的边框
    set(gca, 'YTick', [min(ssc) max(ssc)]);
     set(gca,'YTickLabel',{num2str(min(ssc),'%.1f\n'),num2str(max(ssc),'%.1f\n')}); % 设置Y轴刻度值
     set(gca,'FontName','Times New Roman','fontsize', 10);% 坐标轴刻度字体大小
    set(get(gca,'XLabel'),'FontSize', 10);
    set(get(gca,'YLabel'),'FontName','Times New Roman','FontSize', 10 );
    set(get(gca,'Title'),'FontSize', 10);
    set(gca,'looseInset',[0 0 0 0]) % [左,下,右,上]
end
xlabel('Sample points');

🎉3 参考文献

​[1]陈丽君,吴君宏,张朝英,徐帅玺,吕泽焱,谭国威,赵祖亮,汪琰,宋蝶,蒋晓雁,杨伟丰.基于迭代寻优的中长期碳排放预测模型构建方法[J].统计科学与实践,2022(11):22-26.

部分理论引用网络文献,若有侵权联系博主删除。

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值