👨🎓个人主页:研学社的博客
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
作为温室气体的主要成分,二氧化碳排放量的增加导致全球变暖,对人们的生活和发展产生直接而持久的负面影响。建立准确的碳排放预测模型对人类健康和生态环境保护至关重要。本文针对碳排放数据高度复杂的问题,建立基于相关积分和相关维数的奇异谱分解(SSD)、神经网络估计时间熵(NNetEn)、变分模态分解(VMD)、食虫植物算法改进的核极限学习机(CPA-KELM)、变色龙群算法改进的最小二乘支持向量机(CSA-LSSVM)等碳排放组合预测模型, 提出了诱导有序加权平均(IOWA)运算符和纠错(EC),命名为C-CSSD-NNetEn-VMD-CPA-KELM-IOWA-CSA-LSSVM-EC。
1. VMD (Variational Mode Decomposition): 变分模态分解是一种信号处理技术,用于将信号分解成不同尺度和频率的固有模态函数(IMF)。
2. CPA (Comprehensive Particle Swarm Optimization): 综合粒子群优化是一种优化算法,通常用于寻找复杂问题的最优解。
3. KELM (Kernel Extreme Learning Machine): 核极限学习机是一种机器学习算法,它结合了极限学习机(ELM)和核方法,用于进行非线性模式识别和回归分析。
4. IOWAl (Improved Weighted AdaBoost Learning): 改进的加权AdaBoost学习是一种集成学习方法,用于提高弱分类器的性能。
5. CSA (Cuckoo Search Algorithm): 布谷鸟搜索算法是一种启发式优化算法,灵感来自布谷鸟的繁殖行为。
6. LSSVM (Least Squares Support Vector Machine): 最小二乘支持向量机是一种用于分类和回归分析的机器学习算法,它基于支持向量机(SVM)框架,使用最小二乘法来优化模型。
这些方法和模型被整合在一起,形成了一个用于碳排放混合预测的复合模型。这种综合方法的目的是提高预测精度和鲁棒性,从而更好地理解和预测碳排放的行为。
📚2 运行结果
主函数部分代码:
clc;clear;close all %% 中国的C-CSSD分解 load SSC_China.mat ssc_len = length(SSC); h3 = figure('NumberTitle','on','Name','SSD分解结果'); set(h3,'position',[378,270,603,197]); k=size(SSC,1); %返回矩阵行数 n=round(k/2); for i = 1:n subplot(n,2,2*i-1); ssc = SSC(i,:); clor = [rand rand rand]; plot(ssc, 'Color', clor); title (['SSC' num2str(i)], 'Color', clor, 'BackgroundColor','none', ...,'Position',[1287.50245571136,0.410722021094829,0] 'HorizontalAlignment','left', 'VerticalAlignment','middle'); xlim([0 ssc_len]) if i < n % 前m-1个分量绘图 set(gca,'xtick',[]) % set函数 将当前图形(gca)的x轴坐标刻度(xtick)标志为空 end set(gca, 'box', 'off') % 去掉上边和右边的边框 set(gca,'FontName','Times New Roman','fontsize', 10);% 坐标轴刻度字体大小 set(get(gca,'XLabel'),'FontSize', 10); set(get(gca,'YLabel'),'FontName','Times New Roman','FontSize', 10); set(get(gca,'Title'),'FontSize', 10); set(gca,'looseInset',[0 0 0 0]) % [左,下,右,上] end xlabel('Sample points'); for i = n+1:k subplot(k-n,2,2*(i-n)); ssc = SSC(i,:); clor = [rand rand rand]; plot(ssc, 'Color', clor); title (['SSC' num2str(i)], 'Color', clor, 'BackgroundColor','none', ...,'Position',[1287.50245571136,0.410722021094829,0] 'HorizontalAlignment','left', 'VerticalAlignment','middle'); xlim([0 ssc_len]) if i < k % 前m-1个分量绘图 set(gca,'xtick',[]) % set函数 将当前图形(gca)的x轴坐标刻度(xtick)标志为空 end set(gca, 'box', 'off') % 去掉上边和右边的边框 set(gca, 'YTick', [min(ssc) max(ssc)]); set(gca,'YTickLabel',{num2str(min(ssc),'%.1f\n'),num2str(max(ssc),'%.1f\n')}); % 设置Y轴刻度值 set(gca,'FontName','Times New Roman','fontsize', 10);% 坐标轴刻度字体大小 set(get(gca,'XLabel'),'FontSize', 10); set(get(gca,'YLabel'),'FontName','Times New Roman','FontSize', 10 ); set(get(gca,'Title'),'FontSize', 10); set(gca,'looseInset',[0 0 0 0]) % [左,下,右,上] end xlabel('Sample points'); %% 美国的C-CSSD分解 load SSC_US.mat ssc_len = length(SSC); h3 = figure('NumberTitle','on','Name','SSD分解结果'); set(h3,'position',[378,270,603,197]); k=size(SSC,1); %返回矩阵行数 n=round(k/2); for i = 1:n subplot(n,2,2*i-1); ssc = SSC(i,:); clor = [rand rand rand]; plot(ssc, 'Color', clor); title (['SSC' num2str(i)], 'Color', clor, 'BackgroundColor','none', ...,'Position',[1287.50245571136,0.410722021094829,0] 'HorizontalAlignment','left', 'VerticalAlignment','middle'); xlim([0 ssc_len]) if i < n % 前m-1个分量绘图 set(gca,'xtick',[]) % set函数 将当前图形(gca)的x轴坐标刻度(xtick)标志为空 end set(gca, 'box', 'off') % 去掉上边和右边的边框 set(gca,'FontName','Times New Roman','fontsize', 10);% 坐标轴刻度字体大小 set(get(gca,'XLabel'),'FontSize', 10); set(get(gca,'YLabel'),'FontName','Times New Roman','FontSize', 10); set(get(gca,'Title'),'FontSize', 10); set(gca,'looseInset',[0 0 0 0]) % [左,下,右,上] end xlabel('Sample points'); for i = n+1:k subplot(k-n,2,2*(i-n)); ssc = SSC(i,:); clor = [rand rand rand]; plot(ssc, 'Color', clor); title (['SSC' num2str(i)], 'Color', clor, 'BackgroundColor','none', ...,'Position',[1287.50245571136,0.410722021094829,0] 'HorizontalAlignment','left', 'VerticalAlignment','middle'); xlim([0 ssc_len]) if i < k % 前m-1个分量绘图 set(gca,'xtick',[]) % set函数 将当前图形(gca)的x轴坐标刻度(xtick)标志为空 end set(gca, 'box', 'off') % 去掉上边和右边的边框 set(gca, 'YTick', [min(ssc) max(ssc)]); set(gca,'YTickLabel',{num2str(min(ssc),'%.1f\n'),num2str(max(ssc),'%.1f\n')}); % 设置Y轴刻度值 set(gca,'FontName','Times New Roman','fontsize', 10);% 坐标轴刻度字体大小 set(get(gca,'XLabel'),'FontSize', 10); set(get(gca,'YLabel'),'FontName','Times New Roman','FontSize', 10 ); set(get(gca,'Title'),'FontSize', 10); set(gca,'looseInset',[0 0 0 0]) % [左,下,右,上] end xlabel('Sample points');
🎉3 参考文献
[1]陈丽君,吴君宏,张朝英,徐帅玺,吕泽焱,谭国威,赵祖亮,汪琰,宋蝶,蒋晓雁,杨伟丰.基于迭代寻优的中长期碳排放预测模型构建方法[J].统计科学与实践,2022(11):22-26.
部分理论引用网络文献,若有侵权联系博主删除。