【信号处理】时间稀疏波数分析(Matlab实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

 “时间稀疏波数分析”是一种新兴的分析方法,它主要关注在时间维度上具有稀疏特性的波数信息。该方法旨在通过对时间序列数据中的波数进行深入研究和分析,提取出有价值的特征和模式。 在实际应用中,时间稀疏波数分析可用于处理各种复杂的信号和数据,例如在物理学、工程学、地球科学等领域,对振动、波动、电磁信号等进行分析,以揭示潜在的规律和趋势。 其核心在于利用稀疏性的特点,有效地减少数据处理的复杂度和计算量,同时提高分析的准确性和可靠性,为相关领域的研究和应用提供有力的工具和理论支持。

📚2 运行结果

主函数部分代码:

clear; 
addpath('functions')
addpath('../data/')

% ---------------------------------------------
% USER-INPUTTED INFORMATION
% ---------------------------------------------
% DEFINE PARAMETERS FOR LAMB WAVE SIMULATION
thkns  = 0.284/100;   % Plate thickness [0.284 cm] (used in the 'simlamb' function)
Fs     = 1e6;         % Original temporal sampling rate
Smodes = 0;           % Vector of the order of the symmetric modes 
Amodes = 0;           % Vector of the order of the asymmetric modes
Qt = 1000;            % Total number of time samples at each grid point in the fully sampled simulated wave

% SET TEMPORAL SAMPLING PARAMETERS
Qs = 50;              % Number of randomly chosen time samples
dr = Qs/Qt;           % Downsampling ratio
Fse = Fs*dr;          % Effective (downsampled) sampling rate

% DISPERSION CURVES
Qf = 15000;           % Number of frequency samples
Mk = 1000;            % Number of wavenumber samples

% SET SPATIAL SAMPLING PARAMETERS
Ssx = 400;            % Spatial (horizontal) sampling rate
Msx = 100;            % Number of samples in x direction
S0x = 0.1;            % Initial spacing for linear array (horizontal distance from transducer)

Ssy = 70;             % Spatial (vertical) sampling rate
Msy = 100;            % Number of samples in y direction
S0y = 0.1;            % Initial spacing for linear array (vertical distance from transducer)


% ORTHOGONAL MATCHING PURSUIT PARAMETERS
tau = 5;            % Sparsity level


%%
% ---------------------------------------------
% GET DATA
% ---------------------------------------------

% DEFINE GRID POINTS
sx = S0x+(1/Ssx:1/Ssx:Msx/Ssx).';
sy = S0y+(1/Ssy:1/Ssy:Msy/Ssy).';

% % UNIFORM SAMPLING
% tr_samples = 1:Qr;
% tr_samples = tr_samples.';
% tr = (tr_samples/Fs);           % Reconstruction time axis
% %tr  = sort(tr);              
% ind1 = floor(linspace(1,Qr,Qt));
% ind2 = ind1;
% t = (tr(ind2)); 
% trnd_samples = tr_samples;

% RANDOM SAMPLING FROM UNIFORMLY SPACED TIME INSTANTS
tr_samples = 1:Qt;                 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]吕国艳,张志毅,方喜风,等. 基于信号波形特征的刀具破损监控方法优化[J]. 传感器技术与应用,2024,12(04).

[2]尹旷,王红斌,方健,等.基于小波分析的高压开关柜局部放电监测仿真[J].计算机仿真,2024,41(06):152-156+179.

🌈4 Matlab代码实现

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值