【单变量输入多步预测】基于TCN-BiGRU的风电功率预测研究(Matlab代码实现)

             💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于TCN-BiGRU的风电功率预测研究

一、研究背景与意义

二、TCN-BiGRU模型概述

三、基于TCN-BiGRU的风电功率预测模型构建

四、研究优势与挑战

五、未来展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于TCN-BiGRU的风电功率预测研究

一、研究背景与意义

风能作为一种清洁、可再生的能源,在全球能源结构转型中发挥着重要作用。然而,风电功率受多种气象因素影响,如风速、风向、温度等,具有显著的波动性和不确定性。准确预测风电功率对于电力系统的调度、优化风电场的运行以及促进风电的并网消纳具有重要意义。TCN-BiGRU模型结合了时间卷积神经网络(TCN)在时间序列特征提取上的优势和双向门控循环单元(BiGRU)在捕捉长期依赖关系上的特长,旨在提高风电功率预测的准确性和稳定性。

二、TCN-BiGRU模型概述

1. TCN(时间卷积神经网络)

  • 特点:TCN通过卷积层和膨胀卷积等结构,有效地提取时间序列中的局部和全局特征,保留时间信息。它能够处理任意长度的输入序列,并保持输出序列与输入序列长度相同,适用于需要保持时间分辨率的预测任务。
  • 作用:在风电功率预测中,TCN能够捕捉风电功率时间序列中的局部和全局特征,提高预测精度。

2. BiGRU(双向门控循环单元)

  • 特点:BiGRU由两个方向的GRU组成,能够同时捕捉序列的正向和反向信息,从而更全面地学习序列的长期依赖关系。在处理时间序列数据时,它能够同时考虑过去和未来的信息,提高预测的精度和稳定性。
  • 作用:在风电功率预测中,BiGRU能够捕捉风电功率数据中的长期依赖关系,进一步提高预测的准确性。
三、基于TCN-BiGRU的风电功率预测模型构建

1. 数据预处理

  • 对风电功率数据进行清洗、去噪、插值等预处理操作,以消除异常值和缺失值对预测结果的影响。
  • 对数据进行归一化处理,以消除不同量纲对模型训练的影响。

2. 特征提取

  • 使用TCN对预处理后的时间序列数据进行特征提取,获取与风电功率相关的局部和全局特征。

3. 时序建模

  • 将TCN的输出作为BiGRU的输入,利用BiGRU捕捉这些特征之间的时序依赖关系。
  • 可选地,引入注意力机制对BiGRU的输出进行加权处理,以突出重要特征的影响。

4. 模型训练与评估

  • 使用训练集数据对TCN-BiGRU模型进行训练,通过反向传播算法更新网络参数。
  • 采用优化算法(如Adam、RMSprop等)加速训练过程,并防止过拟合。
  • 使用测试集数据对训练好的模型进行评估,计算预测误差等性能指标(如均方误差MSE、平均绝对误差MAE等)。
四、研究优势与挑战

优势

  1. 高精度:TCN和BiGRU的结合使得模型能够同时捕捉时间序列中的局部和全局特征以及长期依赖关系,从而提高预测精度。
  2. 稳定性好:BiGRU的双向结构和门控机制使得模型在处理时序数据时具有更好的稳定性。
  3. 适应性强:该模型能够处理非线性、高维的时序数据,适用于复杂的风电预测场景。

挑战

  1. 数据依赖性强:模型的预测性能高度依赖于输入数据的质量和数量。如果数据存在缺失或异常值,可能会对预测结果产生较大影响。
  2. 计算复杂度:TCN-BiGRU模型的计算复杂度较高,需要较长的训练时间和较高的计算资源。
  3. 模型优化:模型的性能受参数影响较大,需要进行细致的参数调优工作以获得最佳预测效果。
五、未来展望

随着深度学习技术的不断发展和完善,基于TCN-BiGRU的风电功率预测研究将不断深入和完善。未来的研究方向可能包括:

  1. 多源数据融合:将更多的数据源(如气象数据、地理数据、电网运行数据等)进行融合,以提高预测模型的准确性和鲁棒性。
  2. 模型优化:通过引入注意力机制、残差网络等先进算法对TCN-BiGRU模型进行优化,以进一步提高预测精度和训练效率。
  3. 实时预测:开发高效的实时预测算法和平台,以实现风电功率的实时预测和动态调度。

综上所述,基于TCN-BiGRU的风电功率预测研究具有重要的学术价值和实际应用意义。通过不断优化和完善预测模型,可以为电力系统的稳定运行和优化调度提供更加可靠的技术支持。

📚2 运行结果

部分代码:

layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([2,1],4,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    lstmLayer(25,'Outputmode','last','name','hidden1') 
    dropoutLayer(0.2,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(outdim,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];
    
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');


%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 150, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',70, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值