💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于BiLSTM(双向长短期记忆网络)的共享单车租赁预测研究,主要利用BiLSTM模型在捕捉时间序列数据中双向依赖关系的能力,以提高预测的准确性和鲁棒性。以下是对该研究的详细探讨:
一、研究背景
随着城市化进程的加快和共享经济的兴起,共享单车作为一种便捷、环保的出行方式,在城市交通中占据了重要地位。然而,如何准确预测共享单车的租赁需求,以优化资源配置、提高运营效率,成为了共享单车企业面临的重要挑战。基于BiLSTM的共享单车租赁预测研究,旨在通过深度学习技术,挖掘历史数据中的潜在规律,实现租赁数量的精准预测。
二、数据准备
1. 数据来源
共享单车租赁数据通常来源于共享单车公司的运营系统,包括用户骑行记录、天气信息、时间信息等。这些数据构成了预测模型的基础。
2. 数据特征
为了构建有效的预测模型,需要选择合适的数据特征。共享单车租赁预测的数据特征可能包括:
- 时间特征:如日期、时间(小时/分钟)、季节、节假日、工作日/非工作日等。
- 天气特征:如温度、湿度、风速、天气状况(晴、阴、雨、雪等)。
- 地点特征:如起始站点、结束站点、区域人口密度等(如果数据可用)。
- 历史租赁量:过去一段时间内的共享单车租赁数量,用于捕捉时间序列的趋势和周期性。
3. 数据预处理
在数据准备阶段,需要进行数据清洗、缺失值处理、异常值检测与处理等步骤,以确保数据的质量和准确性。对于分类变量(如季节、天气状况等),通常需要进行独热编码或标签编码;对于连续变量(如温度、湿度等),可能需要进行归一化或标准化处理。
三、模型构建
1. BiLSTM算法介绍
BiLSTM是LSTM(长短期记忆网络)的一种变体,由前向LSTM和后向LSTM组合而成。LSTM由于其设计的特点,非常适合用于对时序数据的建模。然而,标准的LSTM只能捕捉到单向的时间依赖关系。而BiLSTM通过同时训练两个方向的LSTM,即前向LSTM和后向LSTM,可以捕捉到数据中的双向依赖关系,从而更全面地理解数据特征。
2. 模型构建过程
- 输入层:接收经过预处理的特征变量,如时间戳、天气状况、季节、历史租赁量等。
- BiLSTM层:利用BiLSTM层捕捉数据中的双向依赖关系,通过前向LSTM和后向LSTM的组合,获取每个时间步的完整上下文信息。
- 全连接层(Dense层):在BiLSTM层之后,添加全连接层进行特征组合和输出预测结果。全连接层将BiLSTM层的输出转换为最终的预测值。
3. 模型训练与评估
- 使用历史数据对模型进行训练,通过反向传播算法和优化器(如Adam、RMSprop等)调整模型参数,以最小化预测误差。
- 在训练过程中,可以采用交叉验证等方法来评估模型在不同数据集上的表现,并根据评估结果对模型进行进一步优化。
- 使用适当的评估指标(如均方误差MSE、平均绝对误差MAE、均方根误差RMSE等)对预测结果进行评估,以验证模型的准确性和鲁棒性。
四、结果分析与应用
1. 结果分析
通过对BiLSTM模型的预测结果进行分析,可以了解不同因素对共享单车租赁需求的影响程度。例如,可以分析工作日和节假日的租赁需求差异、天气变化对租赁需求的影响等。同时,还可以评估模型的预测精度和稳定性,以判断模型是否满足实际需求。
2. 应用建议
基于BiLSTM的共享单车租赁预测模型可以为共享单车公司的运营和调度提供科学依据。根据模型的预测结果,公司可以制定更加科学合理的运营策略。例如,在高需求时段提前增加车辆投放;在低需求时段减少车辆投放以降低成本;根据天气变化调整车辆布局等。此外,还可以将预测结果用于制定促销活动计划、优化站点布局等方面,以提高公司的运营效率和用户满意度。
五、结论与展望
基于BiLSTM的共享单车租赁预测研究是一种创新的预测方法,它利用BiLSTM模型在捕捉时间序列数据中双向依赖关系的能力,实现了租赁数量的精准预测。该研究不仅为共享单车系统的运营管理提供了科学决策支持,也为未来交通规划和城市发展提供了宝贵参考。然而,该领域的研究仍处于不断探索和完善阶段,未来还需要进一步的研究和实践来验证和优化该方法的性能。随着数据量的不断增加和算法的不断优化,基于BiLSTM的共享单车租赁预测模型的预测精度和实用性有望进一步提高。
📚2 运行结果
部分代码:
def evaluate_forecasts(Ytest, predicted_data, n_out): # 定义一个函数来评估预测的性能。 mse_dic = [] rmse_dic = [] mae_dic = [] mape_dic = [] r2_dic = [] # 初始化存储各个评估指标的字典。 table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈鑫,刘琦.基于时间序列分析的共享单车未来格局预测[J].现代营销(下旬刊), 2017(10):216-216.DOI:10.3969/j.issn.1009-2994.2017.10.174.
[2]焦志伦,金红,刘秉镰,等.大数据驱动下的共享单车短期需求预测——基于机器学习模型的比较分析[J].商业经济与管理, 2018(8):11.DOI:10.14134/j.cnki.cn33-1336/f.2018.08.002.
[3]甘明.基于深度学习的共享单车预测与调度研究[D].杭州电子科技大学,2022.
[4]靳海红,张帅.基于数据分析的共享单车模式与前景研究[J].商情, 2019.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取