【优化调度】基于改进遗传算法的公交车调度排班优化的研究与实现(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于改进遗传算法的公交车调度排班优化的研究与实现

引言

问题建模

遗传算法的改进

算法实现

实际应用

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

本文对当前公交企业调度系统进行了分析,建立了公交排班的数学模型。本文基于数据挖掘分析的结果上,使用截面客流量数据对模型进行约束,得出了公交客流出行的空间分布规律。再以发车间隔为决策变量,以发车最大间隔、最小发车间隔和车辆满载率为约束条件,建立公交线路排班的数学模型,以公交公司发车成本最小和乘客等车时间成本最小为目标,建立双目标函数的数学模型。
本文设计了一种基于改进的遗传算法公交排班调度优化的解决方法,在对排班结果进行优化的过程中,本文分别在选择、交叉、变异三个阶段对算法进行改进和优化。选择的改进上是设计一个动态适应度函数,采用无放回式优良个体多复制的选择的方法。交叉的改进上是设计了新的交叉算子,交叉算子考虑了初期群体和后期群体质量会相差较大,所以使应交义函数。变异上的改进是引入了禁忌搜索算法。在预测客流量基础上,基于改进的遗传算法,模型求解确定出最优的排班时刻表和最小配车数。

公交车调度排班优化是一个复杂而重要的问题,它涉及到公共交通系统的效率、成本和乘客体验等方面。改进遗传算法是一种常用的优化算法,可以应用于这类问题中。

1. **问题建模**:首先需要将公交车调度排班问题建模成一个数学模型,包括公交线路、车辆数量、乘客需求、站点之间的距离和时间、班次频率等因素。

2. **目标函数定义**:确定优化目标,例如最小化总成本(包括车辆成本、人工成本等)、最小化乘客等待时间、最大化运营效率等。

3. **遗传算法设计**:设计适合公交车调度排班问题的改进遗传算法。改进的部分可以包括适应度函数的设计、交叉和变异操作的优化,以及选择策略的改进等。

4. **编码与解码**:将调度方案编码成适合遗传算法处理的基因型,并设计解码方法将基因型映射到实际的调度方案。

5. **算法实现**:利用编程语言(如Python、Java等)实现设计的改进遗传算法,并根据实际数据进行调试和优化。

6. **参数调优**:调整算法参数,如种群大小、交叉率、变异率等,以提高算法的收敛速度和性能。

7. **结果评估**:评估优化算法得到的调度方案,比较其与现有方案的性能差异,并进行必要的调整和改进。

8. **实际应用**:将优化后的调度方案应用到实际公交运营中,并持续监测和优化,以确保其在实际运营中的有效性和可行性。

以上是一个大致的研究与实现流程,当然在具体实施中还会遇到一些挑战和细节问题,需要结合具体情况进行调整和处理。

基于改进遗传算法的公交车调度排班优化的研究与实现

引言

公交车调度排班问题是城市公交调度的核心内容,它决定了公交车辆的正常运行和乘客的服务水平。合理的排班方案不仅能提高公交系统的运营效率,还能降低运营成本,提升乘客满意度。遗传算法作为一种有效的优化算法,已被广泛应用于解决公交排班问题。然而,传统遗传算法在解决复杂问题时存在结果不准确、计算效率低等问题。因此,本文提出了一种基于改进遗传算法的公交车调度排班优化方法。

问题建模

首先,将公交车调度排班问题形式化为数学模型。这包括定义目标函数(如最小化总行驶时间、最小化等待时间等)、约束条件(如车辆容量、乘客需求、发车间隔等)以及决策变量(如车辆的行驶路线、发车时间等)。

  1. 目标函数

    • 公交公司发车成本最小
    • 乘客等车时间成本最小

    这两个目标可以转化为单目标函数,通过赋予不同的权系数来实现。

  2. 约束条件

    • 最大和最小发车间隔
    • 相邻发车间隔之差
    • 车辆满载率
  3. 决策变量

    • 发车时间间隔
遗传算法的改进

传统的遗传算法在解决公交排班问题时需要进行改进,以提高搜索效率和收敛性。本文在遗传算法的选择、交叉和变异三个阶段进行了优化。

  1. 选择阶段
    • 设计一个动态适应度函数,采用无放回式优良个体多复制的选择方法。这种方法能够确保优良基因在种群中的传播,提高算法的收敛速度。
  2. 交叉阶段
    • 设计新的交叉算子,考虑初期群体和后期群体质量差异较大的问题。通过调整交叉概率和交叉方式,使算法在初期能够广泛搜索解空间,在后期能够精细搜索最优解。
  3. 变异阶段
    • 引入禁忌搜索算法,对变异操作进行改进。禁忌搜索算法能够避免算法陷入局部最优解,提高全局搜索能力。
算法实现
  1. 编码与解码
    • 将调度方案编码成适合遗传算法处理的基因型,如采用真实值编码方法,每个编码位置的值表示该时刻距离首发时刻的时间(单位为分钟)。
    • 设计解码方法将基因型映射到实际的调度方案。
  2. 算法实现
    • 利用编程语言(如Matlab)实现改进的遗传算法。
    • 根据实际数据进行调试和优化,调整算法参数(如种群大小、交叉率、变异率等)以提高算法性能。
  3. 实验设计与参数调优
    • 进行实验以评估算法的性能,尝试不同的参数设置和算法配置,找到最优的调度排班方案。
  4. 结果评估
    • 评估优化算法得到的调度方案,比较其与现有方案的性能差异,并进行必要的调整和改进。
实际应用

将优化后的调度方案应用到实际公交运营中,并持续监测和优化,以确保其在实际运营中的有效性和可行性。通过实时数据采集和处理,结合智能交通控制和优化技术,进一步提高公交系统的效率和服务质量。

结论

基于改进遗传算法的公交车调度排班优化方法,通过综合考虑乘客和公交公司的双重利益,以及多种约束条件,能够得出非均匀的发车时刻表,提高计算效率。该方法不仅能够有效降低公交公司的运营成本,还能减少乘客的等车时间,提升公交系统的整体服务水平。未来,随着智能交通技术的不断发展,该方法将具有更广泛的应用前景。

📚2 运行结果

 

本文对当前公交企业调度系统进行了分析,建立了公交排班的数学模型。本文基于数据挖掘分析的结果上,使用截面客流量数据对模型进行约束,得出了公交客流出行的空间分布规律。再以发车间隔为决策变量,以发车最大间隔、最小发车间隔和车辆满载率为约束条件,建立公交线路排班的数学模型,以公交公司发车成本最小和乘客等车时间成本最小为目标,建立双目标函数的数学模型。
本文设计了一种基于改进的遗传算法公交排班调度优化的解决方法,在对排班结果进行优化的过程中,本文分别在选择、交叉、变异三个阶段对算法进行改进和优化。选择的改进上是设计一个动态适应度函数,采用无放回式优良个体多复制的选择的方法。交叉的改进上是设计了新的交叉算子,交叉算子考虑了初期群体和后期群体质量会相差较大,所以使应交义函数。变异上的改进是引入了禁忌搜索算法。在预测客流量基础上,基于改进的遗传算法,模型求解确定出最优的排班时刻表和最小配车数。 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]陈玲玲,苏勇.改进遗传算法在公交车优化调度中的应用[J].科学技术与工程, 2009(12):4.DOI:10.3969/j.issn.1671-1815.2009.12.097.

[2]张文贵.基于遗传算法的公交车辆调度优化研究[D].中国地质大学(北京)[2024-05-14].DOI:CNKI:CDMD:2.2007.066661.

[3]赵丽红.基于遗传算法的公交车调度优化问题的研究[D].内蒙古大学,2010.DOI:10.7666/d.y1736245.

[4]刘好德,黄灿彬,上海理工大学,上海.基于一种改进遗传算法的公交调度优化模型研究[J].第一届中国智能交通年会, 2008.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值