💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
使用航空航天模块的国际航线规划模拟器研究
在这个演示中,以一个包含纬度和经度的城市的有序列表作为输入,模拟器计算两个连续城市之间的最短路径,然后在追踪轨迹的同时在3D地球上动画显示飞机的运动。请注意,这是一个在MATLAB中完成数据分析并在Simulink中“回放”数据的示例。
此外,飞机上还附有一个东北向(NED)框架,可以更好地理解飞机坐标系。
一、引言
随着全球航空业的快速发展,国际航线规划成为航空公司运营中的关键环节。为了优化航线、提高飞行效率并降低运营成本,开发一个能够精确计算最短路径并在3D环境中动画显示飞机运动的国际航线规划模拟器显得尤为重要。本文介绍了一个基于MATLAB和Simulink的模拟器,该模拟器利用航空航天模块实现了上述功能。
二、系统架构
- 输入数据:
- 包含纬度和经度的城市有序列表。
- 核心模块:
- MATLAB:用于数据处理、路径计算和轨迹生成。
- Simulink:用于3D动画显示和飞机运动模拟。
- 航空航天模块:
- 提供飞行力学、导航和制导算法,支持飞机在3D空间中的运动模拟。
三、功能实现
- 路径计算:
- 利用MATLAB中的地理信息系统(GIS)工具箱,根据输入的城市列表计算两个连续城市之间的最短路径。
- 考虑地球曲率和大气条件对飞行路径的影响,进行必要的修正。
- 轨迹生成:
- 根据计算出的最短路径,生成飞机的飞行轨迹。
- 轨迹包括飞行高度、速度、航向等参数,确保飞行过程的安全和效率。
- 3D动画显示:
- 在Simulink中搭建3D地球模型,将计算出的飞行轨迹映射到地球表面。
- 实时动画显示飞机的运动过程,包括起飞、飞行和降落阶段。
- 提供视角切换、缩放和旋转功能,方便用户从不同角度观察飞行轨迹。
- 飞机坐标系:
- 在飞机上附加一个东北向(NED)框架,用于表示飞机的姿态和位置。
- NED框架包括北(N)、东(E)和地(D)三个方向,有助于用户更好地理解飞机在3D空间中的运动状态。
四、技术细节
- MATLAB数据处理:
- 使用MATLAB的脚本语言编写数据处理算法,包括路径计算和轨迹生成。
- 利用MATLAB的图形绘制功能,生成飞行轨迹的二维和三维图形。
- Simulink动画设计:
- 在Simulink中搭建3D地球模型,使用航空航天模块中的飞行力学和导航算法。
- 设计动画控制器,根据飞行轨迹数据控制飞机的运动。
- 添加交互界面,允许用户输入城市列表、选择飞行参数和查看动画结果。
- 模块集成:
- 将MATLAB中的数据处理算法与Simulink中的3D动画模型进行集成。
- 实现数据在MATLAB和Simulink之间的实时传输和同步。
五、应用前景
- 航空公司运营优化:
- 通过精确计算最短路径和动画显示飞行轨迹,帮助航空公司优化航线规划。
- 提高飞行效率,降低运营成本,增强市场竞争力。
- 飞行训练:
- 利用模拟器进行飞行训练,提高飞行员的飞行技能和应对突发情况的能力。
- 通过模拟不同飞行条件和场景,增强飞行员的实战经验和安全意识。
- 科研与教育:
- 为航空航天领域的科研工作者提供实验平台,支持飞行力学、导航和制导算法的研究。
- 作为航空航天专业的教学工具,帮助学生理解飞行原理和运动规律。
六、结论
本文介绍了一个基于MATLAB和Simulink的国际航线规划模拟器,该模拟器利用航空航天模块实现了最短路径计算、轨迹生成和3D动画显示等功能。通过该模拟器,用户可以直观地观察飞机的运动过程,优化航线规划,提高飞行效率。未来,我们将继续完善模拟器的功能,提高计算精度和动画效果,为航空公司的运营优化和飞行训练提供更加有力的支持。
📚2 运行结果
部分代码:
% City 6: Teheran Iran 35 45 N 51 45 E
latitude(6,1)=35+45/60;
longitude(6,1)=51+45/60;
% City 7: Rome, Italy 41 54 N 12 27 E
latitude(7,1)=41+54/60;
longitude(7,1)=12+27/60;
% City 8: London 51 32 N 0 5 W
latitude(8,1)=51+32/60;
longitude(8,1)=-5;
% City 9: Mexico 19 26 N 99 7 W
latitude(9,1)=19+26/60;
longitude(9,1)=-99-7/60;
% Scaling calculations
% If the aircraft moves along the great circle fully, then use 20,000
% points to sample that interval. If not, scale it.
t_scaled=2*10000/360;
% These two variables will help in creating the complete list of latitudes
% and longitudes for all the N cities
t_index=1;
t_span=1;
% Assess the size of the final array that you need to initialize that will
% store all the latitudes and longitudes for the animation. This will
% eventually be fed as a vector into the Simulink model. The Simulink model
% has the appropriate transformations to transform this data for animation.
for i=1:N
k=mod(i,N)+1;
t_span=round(t_scaled*distance(latitude(i,1),longitude(i,1),latitude(k,1),longitude(k,1)));
t_index=t_index+t_span-1;
end
LL=zeros(t_index, 2);
% Reinitializing t_index because we want to use it again
t_index=1;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]刘爱元,赵国荣,祝萌.飞行控制与惯性导航仿真训练系统的研究[J].计算机仿真, 2006, 23(4):5.
[2]包国江.基于航海模拟器的船舶操纵评估系统的研究[D].大连海事大学,2008.
[3]王航,代静,闫晓飞,等.模拟飞行训练在航空航天医学专业本科教学中的实践[J].医学争鸣, 2018, 9(4):4.
🌈4 Matlab代码、Simulink仿真实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取