👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
先看看效果,比比谁更好:
以下是对9种智能优化算法(CGO、SCA、GWO、CSA、SSA、HHO、WOA、PSO、TSO)的比较研究文档,涵盖核心思想、优缺点、应用场景、性能指标和异同点分析:
一、算法核心思想与数学模型对比
算法 | 核心思想 | 数学模型特点 | |
---|---|---|---|
CGO | 基于混沌理论的分形自相似性,利用Sierpinski三角形生成新个体增强全局搜索 | 四种种子位置更新公式,结合混沌随机矩阵和最优解动态调整 | |
SCA | 通过正弦/余弦函数的周期性振荡平衡全局搜索与局部开发 | 位置更新公式中线性递减参数r1控制探索-开发转换 | |
GWO | 模仿灰狼社会等级(α/β/δ/ω)的狩猎策略 | 基于α、β、δ的位置加权更新个体位置 | |
CSA | 类搜索模型结合差分进化,调节簇类结构优化搜索机制 | 层次聚类构造类组织,融合DE的变异策略 | |
SSA | 模拟麻雀觅食与反捕食行为,分发现者、跟随者、警戒者角色 | 发现者随机探索,跟随者追踪最优,警戒者逃离危险 | |
HHO | 模仿哈里斯鹰的协同捕猎策略(软/硬包围、俯冲攻击) | 动态逃逸能量参数控制四种狩猎模式切换 | |
WOA | 鲸鱼气泡网攻击行为的数学建模(包围、螺旋更新、随机搜索) | 参数a控制搜索半径,螺旋方程模拟收缩包围 | |
PSO | 粒子群协作共享个体与群体最优经验 | 速度更新公式含惯性权重、个体/社会学习因子 | |
TSO | 模拟电路瞬态振荡行为,平衡探索与开发 | 热阻系数和衰减系数调节搜索步长 |
二、优缺点总结
算法 | 优点 | 缺点 | |
---|---|---|---|
CGO | 全局搜索能力强,分形结构增强多样性 | 计算成本较高,参数调整复杂 | |
SCA | 结构简单、参数少,适用于高维问题 | 线性递减策略易导致前期收敛过快 | |
GWO | 收敛速度快,社会等级模型简单有效 | 高维问题易陷入局部最优 | |
CSA | 类结构动态调节,稳定性高 | 实现复杂度较高,依赖聚类质量 | |
SSA | 收敛快、鲁棒性强,适应多模态问题 | 种群多样性后期下降,需改进初始策略 | |
HHO | 多种捕猎策略灵活切换,局部搜索能力强 | 参数敏感,逃逸能量调节需优化 | |
WOA | 全局搜索性能优异,适用于非线性问题 | 局部开发不足,初始种群依赖性高 | |
PSO | 实现简单,快速收敛,易于并行化 | 易早熟收敛,后期搜索效率低 | |
TSO | 物理模型直观,平衡探索与开发 | 应用场景有限,需更多工程验证 |
三、典型应用场景
算法 | 应用领域 | 具体案例 | |
---|---|---|---|
CGO | 路径规划、工程优化 | 复杂动态环境下的机器人路径生成 | |
SCA | 电力调度、参数优化 | SVM核函数参数选择、微电网能量管理 | |
GWO | 能源系统、结构设计 | 风-光-储协同优化、航空发动机轮盘设计 | |
CSA | 高维优化、数据聚类 | WSN覆盖优化、医学数据特征选择 | |
SSA | 机器学习、环境监测 | 土壤供肥量预测、水质评价 | |
HHO | 图像处理、故障诊断 | 医疗影像分割、风力发电机故障检测 | |
WOA | 医学影像、计算机视觉 | 图像分类、光伏模型参数提取 | |
PSO | 控制工程、神经网络 | PID控制器调参、CNN-GRU网络优化 | |
TSO | 电力系统参数整定 | 分布式光伏-VSG功频参数优化 |
四、性能指标对比
指标 | CGO | SCA | GWO | CSA | SSA | HHO | WOA | PSO | TSO |
---|---|---|---|---|---|---|---|---|---|
收敛速度 | 中 | 快 | 快 | 慢 | 快 | 中 | 中 | 快 | 中 |
全局搜索 | 强 | 较强 | 一般 | 较强 | 强 | 较强 | 强 | 一般 | 较强 |
鲁棒性 | 高 | 高 | 中 | 高 | 高 | 中 | 中 | 低 | 中 |
局部开发 | 一般 | 强 | 强 | 中 | 较强 | 强 | 较弱 | 强 | 中 |
数据来源:
五、异同点分析
-
设计思想:
- 仿生类:GWO(狼群)、SSA(麻雀)、HHO(鹰)、WOA(鲸鱼)均模拟生物行为;物理模型类:TSO(电路瞬态)、CGO(混沌分形)。
- 数学驱动类:SCA(三角函数)、PSO(群体协作)、CSA(类结构聚类)。
-
探索-开发平衡机制:
- 动态参数:SCA(r1线性递减)、HHO(逃逸能量)、WOA(参数a)。
- 多策略切换:CGO(四种种子更新)、HHO(四种捕猎模式)。
-
适用问题类型:
- 高维复杂问题:CGO、CSA、SSA表现更优。
- 实时性要求高:PSO、GWO、SCA因收敛快更适用。
六、总结
CGO和SSA在全局搜索和鲁棒性上表现突出,适合复杂优化问题;SCA和PSO因结构简单广泛用于工程参数调优;HHO和GWO在局部开发能力上有优势;TSO和CSA作为新兴算法,需更多应用验证。未来趋势包括混合算法(如CGGWO)和多策略改进,以平衡性能与计算成本。
📚2 运行结果
2.1 F1
2.2 F2
2.3 F3
就不一一例举啦,直接到F7:
2.4 F7
2.5 部分代码
semilogy(curve8,'Color','b','LineWidth',2)%GWO
semilogy(curve2,'Color','m','LineWidth',2)%SCA
semilogy(curve3,'Color','g','LineWidth',2)%SSA
semilogy(curve4,'Color','y','LineWidth',2)%HHO
semilogy(curve5,'Color','k','LineWidth',2)%WOA
semilogy(curve6,'Color',[0.9290 0.6940 0.1250],'LineWidth',2)%PSO
semilogy(curve7,'Color',[0.4940 0.1840 0.5560],'LineWidth',2)%TSO
semilogy(curve9,'Color','c','LineWidth',2)%CGO
title(Function_name)
xlabel('迭代次数','fontsize',12,'FontWeight','bold');
ylabel('最优解','fontsize',12,'FontWeight','bold');
axis tight
grid on
box on
legend('CSA','GWO','SCA','SSA','HHO','WOA','PSO','TSO','CGO') %,'fontsize',12,'FontWeight','bold','FontName','Arial Narrow'disp(["CSA"," SCA"," SSA"," HHO"," WOA"," PSO"," TSO"," GWO"," CGO"])
output=[X_c1 X_c2 X_c3 X_c4 X_c5 X_c6 X_c7 X_c8 X_c9]
以下是23个测试函数:
function [lb,ub,dim,fobj] = Get_Functions_details(F)
dim1=30;
switch F
case 'F1'
fobj = @F1;
lb=-100;
ub=100;
dim=dim1;
case 'F2'
fobj = @F2;
lb=-10;
ub=10;
dim=dim1;
case 'F3'
fobj = @F3;
lb=-100;
ub=100;
dim=dim1;
case 'F33'
fobj = @F33;
lb=-10;
ub=10;
dim=dim1;
case 'F4'
fobj = @F4;
lb=-100;
ub=100;
dim=dim1;
case 'F5'
fobj = @F5;
lb=-30;
ub=30;
dim=dim1;
case 'F6'
fobj = @F6;
lb=-100;
ub=100;
dim=dim1;
case 'F7'
fobj = @F7;
lb=-1.28;
ub=1.28;
dim=dim1;
case 'F8'
fobj = @F8;
lb=-500;
ub=500;
dim=dim1;
case 'F88'
fobj = @F88;
lb=-0.5;
ub=0.5;
dim=dim1;
case 'F9'
fobj = @F9;
lb=-5.12;
ub=5.12;
dim=dim1;
case 'F100'
fobj = @F100;
lb=-5.12;
ub=5.12;
dim=dim1;
case 'F10'
fobj = @F10;
lb=-32;
ub=32;
dim=dim1;
case 'F11'
fobj = @F11;
lb=-600;
ub=600;
dim=dim1;
case 'F12'
fobj = @F12;
lb=-50;
ub=50;
dim=dim1;
case 'F13'
fobj = @F13;
lb=-50;
ub=50;
dim=dim1;
case 'F14'
fobj = @F14;
lb=-65.536;
ub=65.536;
dim=2;
case 'F15'
fobj = @F15;
lb=-5;
ub=5;
dim=4;
case 'F16'
fobj = @F16;
lb=-5;
ub=5;
dim=2;
case 'F17'
fobj = @F17;
lb=-5;
ub=5;
dim=2;
case 'F18'
fobj = @F18;
lb=-2;
ub=2;
dim=2;
case 'F19'
fobj = @F19;
lb=0;
ub=1;
dim=3;
case 'F20'
fobj = @F20;
lb=0;
ub=1;
dim=6;
case 'F21'
fobj = @F21;
lb=0;
ub=10;
dim=4;
case 'F22'
fobj = @F22;
lb=0;
ub=10;
dim=4;
case 'F23'
fobj = @F23;
lb=0;
ub=10;
dim=4;
end
end
% F1
function o = F1(x)
o=sum(x.^2); %sphere
end
% F2
function o = F2(x)
o=sum(abs(x))+prod(abs(x)); %shwefel 2.22
end
% F3
function o = F3(x)
dim=size(x,2);
o=0;
for i=1:dim
o=o+sum(x(1:i))^2; %Schwefel 1.2
end
end
function o = F33(x)
dim=size(x,2);
o=sum(([1:dim].*x).^2); %sum squares
end
% F4
function o = F4(x)
o=max(abs(x)); %Schwefel 2.21
end
% F5
function o = F5(x)
dim=size(x,2);
o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2); %Rosenbrock
end
% F6
function o = F6(x)
o=sum(abs((x+.5)).^2); %step
end
% F7
function o = F7(x)
dim=size(x,2);
o=sum([1:dim].*(x.^4))+rand; %Quartic Noise
end
% F8
function o = F8(x)
dim=size(x,2);
o=sum(-x.*sin(sqrt(abs(x)))); %Schwefel 2.26 +418.9829*dim
end
% F9
function o = F88(x) %Weierstrass
dim=size(x,2);a=0.5;b=3;kmax=21;o=0;
for i=1:dim
for j=1:kmax
o=o+a*cos(2*pi*b*(x(1,i)+0.5));
end
end
for n=1:kmax
o=o-dim*a*cos(2*pi*b*0.5);
end
end
function o = F9(x)
dim=size(x,2);
o=sum(x.^2-10*cos(2*pi.*x))+10*dim; %Rastrigin
end
function o = F100(x) % Non continous Rastrigin
dim=size(x,2);y=zeros(1,dim);
for i=1:dim
if (x(1,i)>=0.5 || x(1,i)<=-0.5)
y(1,i)=round(2*x(1,i))/2.0;
else
y(1,i)=x(1,i);
end
end
o=sum(y.^2-10*cos(2*pi.*y))+10*dim;
end
% F10
function o = F10(x)
dim=size(x,2);
o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1); %Ackley
end
% F11
function o = F11(x)
dim=size(x,2);
o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1; %Griewank
end
% F12
function o = F12(x)
dim=size(x,2);
o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...
(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4)); %Pendlized
end
% F13
function o = F13(x)
dim=size(x,2);
o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...
((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4)); %Generalized Pendlized
end
% F14
function o = F14(x)
aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];
for j=1:25
bS(j)=sum((x'-aS(:,j)).^6);
end
o=(1/500+sum(1./([1:25]+bS))).^(-1);
end
% F15
function o = F15(x)
aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
end
% F16
function o = F16(x)
o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
end
% F17
function o = F17(x)
o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
end
% F18
function o = F18(x)
o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
(30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2))); %Goldstein Price
end
% F19
function o = F19(x)
aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];
pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
o=0;
for i=1:4
o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end
% F20
function o = F20(x)
aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];
cH=[1 1.2 3 3.2];
pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
o=0;
for i=1:4
o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end
% F21
function o = F21(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
o=0;
for i=1:5
o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
% F22
function o = F22(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
o=0;
for i=1:7
o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
% F23
function o = F23(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
o=0;
for i=1:10
o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
function o=Ufun(x,a,k,m)
o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]王丽娟,吴锋.基于CSA和PSO的多目标优化任务调度算法[J].西南师范大学学报(自然科学版),2021,46(03):27-32.DOI:10.13718/j.cnki.xsxb.2021.03.005.
[2]林忠甫,颜力,黄伟,李洁.基于参数自适应策略的改进乌鸦搜索算法[J].计算机科学,2021,48(S1):260-263+284.