👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
专家学者根据对人类视觉的研究,提出了注意力机制,计算机视觉、自然语言处理等领域[14-17]引入该机制优化现有模型,学习并确定重点关注的目标区域,使模型能够在有限资源下关注最有效的信息。本文基于这一机制改进 CNN 联合 LSTM 的体系结构,通过注意力机制处理被现有结构忽略的短序列特征的重要度差异,提取显著细粒度特征,同时便于LSTM更有效地捕捉时
间依赖性。
针对 CNN 联合 LSTM 时,忽略短期特征重要度而导致的重要特征丢失、长期时序规律挖掘有待优化等问题,本文提出基于注意力机制的 CNN-LSTM 预测模型。设计基于注意力机制的CNN结构,基于标准CNN,以并行注意力支路提取显著性特征。注意力支路比CNN设计了更大的输入尺度,以扩大输入感受野,从而更全面获取时序上下文信息,学习局部序列特征的重要程度。注意力模块通过提升最终模型中重要时序特征的影响力,降低最终模型中非重要特征的影响力,有效地应对模型未能较好区分时序特征重要程度差异性的不足。同时,标准 CNN 模块和注意力机制模块以不同长度序列作为输入的多尺度输入方式,能有效提取更丰富的短序列特征。LSTM 从前端抽取出的细粒度特征
中抽取粗粒度特征,精细化处理不同维度特征,并且能够一定程度避免因步长过长造成的记忆丢失和梯度弥散。
通过基于注意力机制的 CNN-LSTM 模型,实现粗细粒度特征融合,全面刻画时序数据。负荷需求量预测为典型的时序预测问题,负荷需求量变化受不同特征影响,并且短时间内各特征的影响程度不同[13]。本文对热电联产企业历史数据进行实验,设计并调整模型结构,最终搭建一种有效的时序预测模型,实验预测结果优于自回归积分滑动平均、支持向量回归和单一的神经网络模型。
摘要
本文提出了一种基于人工大猩猩部队优化算法(GTO)改进的卷积神经网络-长短期记忆网络(CNN-LSTM)模型,用于解决多变量多步时间序列预测问题。该模型结合了CNN强大的空间特征提取能力和LSTM优秀的序列建模能力,并利用GTO算法对模型参数进行优化,提升了预测精度和泛化能力。通过在多个公开数据集上的实验验证,结果表明,GTO-CNN-LSTM模型在预测精度和稳定性方面均优于传统的CNN-LSTM模型以及其他几种先进的预测模型。
引言
时间序列预测在各个领域,例如金融、气象、交通等,都具有重要的应用价值。多变量多步时间序列预测,即预测多个变量在未来多个时间步上的取值,由于其复杂性和挑战性,一直是研究的热点。传统的预测方法,如ARIMA、指数平滑等,在处理非线性、高维数据时往往表现欠佳。近年来,深度学习技术,特别是卷积神经网络(CNN)和长短期记忆网络(LSTM),在时间序列预测领域取得了显著成果。然而,CNN-LSTM模型的参数众多,其性能严重依赖于参数的选取。因此,寻找一种高效的优化算法来优化CNN-LSTM模型的参数至关重要。
方法
1. CNN-LSTM模型
CNN擅长提取局部特征,而LSTM能够有效捕捉长期依赖关系,将两者结合可以有效地处理复杂的时间序列数据。CNN层用于提取输入时间序列数据的空间特征,而LSTM层则用于捕捉时间序列数据的长期依赖关系。
2. 注意力机制
专家学者根据对人类视觉的研究,提出了注意力机制,并引入到计算机视觉、自然语言处理等领域,以优化现有模型。本文基于注意力机制改进CNN联合LSTM的体系结构,处理被现有结构忽略的短序列特征的重要度差异,提取显著细粒度特征,同时便于LSTM更有效地捕捉时间依赖性。
3. 人工大猩猩部队优化算法(GTO)
GTO是一种新型的元启发式优化算法,模拟了大猩猩群体觅食的行为,具有较强的全局搜索能力和局部搜索能力。GTO算法用于优化CNN层和LSTM层的参数,包括卷积核的数量和大小、LSTM单元的数量等。GTO算法通过模拟大猩猩群体的觅食行为,在搜索空间中迭代寻找最优参数组合,从而提升模型的预测精度。
实验
为了验证GTO-CNN-LSTM模型的有效性,本文在多个公开数据集上进行了实验,并与传统的CNN-LSTM模型、以及其他先进的预测模型,例如GRU、基于注意力机制的模型等进行了比较。实验指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)等。实验结果表明,GTO-CNN-LSTM模型在所有数据集上的预测精度均优于传统的CNN-LSTM模型以及其他对比模型。
结果与分析
GTO算法有效地提高了CNN-LSTM模型的泛化能力,使其在面对不同数据集时能够保持较高的预测精度。同时,本文还分析了不同GTO算法参数对模型性能的影响,找到了一组较优的参数设置。
结论
本文提出了一种基于GTO算法优化的CNN-LSTM模型,用于多变量多步时间序列预测。实验结果验证了该模型的有效性和优越性。GTO算法有效地解决了CNN-LSTM模型参数优化问题,提升了模型的预测精度和泛化能力。未来研究可以探索更先进的优化算法,例如改进的GTO算法或者其他元启发式算法,进一步提升模型的性能。此外,还可以研究如何将GTO-CNN-LSTM模型应用于更复杂的实际问题,例如考虑噪声数据和缺失数据的影响。
📚2 运行结果
部分代码:
function result(true_value,predict_value,type)
disp(type)
rmse=sqrt(mean((true_value-predict_value).^2));
disp(['根均方差(RMSE):',num2str(rmse)])
mae=mean(abs(true_value-predict_value));
disp(['平均绝对误差(MAE):',num2str(mae)])
mape=mean(abs((true_value-predict_value)./true_value));
disp(['平均相对百分误差(MAPE):',num2str(mape*100),'%'])
R2 = 1 - norm(true_value-predict_value)^2/norm(true_value - mean(true_value))^2;
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]吴勇,高昕,郭灏阳,刁海岸,刘庆丰,杨强强.基于优化的VMD-CNN-LSTM模型的光伏功率预测[J].邵阳学院学报(自然科学版),2022,19(06):9-17.