数学分析 积分表及常用积分公式

一.含有 x n x^n xn的形式

1. ∫ x n d x = x n + 1 n + 1 + C   ( n ≠ − 1 ) 1.\int x^ndx=\frac{x^{n+1}}{n+1}+C\,(n≠-1) 1.xndx=n+1xn+1+C(n=1)

2. ∫ d x x = l n   ∣ x ∣ + C 2.\int\frac{dx}{x}=ln\,|x|+C 2.xdx=lnx+C

#############################################################

二.含有 a x + b ax+b ax+b的形式

1. ∫ d x a x + b = 1 a ln ⁡ ∣ a x + b ∣ + C 1.\int{\frac{dx}{ax+b}}=\frac{1}{a}\ln{\mid ax+b \mid}+C 1.ax+bdx=a1lnax+b+C

2. ∫ ( a x + b ) n d x = 1 a ( n + 1 ) ( a x + b ) n + 1 + C ( n ≠ − 1 ) 2.\int{(ax+b)^ndx}=\frac{1}{a(n+1)}(ax+b)^{n+1}+C(n\neq-1) 2.(ax+b)ndx=a(n+1)1(ax+b)n+1+C(n=1)

3. ∫ x a x + b d x = 1 a 2 ( a x − b ln ⁡ ∣ a x + b ∣ ) + C 3.\int{\frac{x}{ax+b}dx}=\frac{1}{a^2}(ax-b\ln{\mid ax+b \mid})+C 3.ax+bxdx=a21(axblnax+b)+C

4. ∫ x 2 a x + b d x = 1 a 3 [ 1 2 ( a x + b ) 2 − 2 b ( a x + b ) + b 2 ln ⁡ ∣ a x + b ∣ ] + C 4.\int{\frac{x^2}{ax+b}dx}=\frac{1}{a^3}[\frac{1}{2}(ax+b)^2-2b(ax+b)+b^2\ln{\mid ax+b \mid}]+C 4.ax+bx2dx=a31[21(ax+b)22b(ax+b)+b2lnax+b]+C

5. ∫ d x x ( a x + b ) = − 1 b ln ⁡ ∣ a x + b x ∣ + C 5.\int{\frac{dx}{x(ax+b)}}=-\frac{1}{b}\ln{\mid \frac{ax+b}{x} \mid}+C 5.x(ax+b)dx=b1lnxax+b+C

6. ∫ d x x 2 ( a x + b ) = − 1 b x + a b 2 ln ⁡ ∣ a x + b x ∣ + C 6.\int{\frac{dx}{x^2(ax+b)}}=-\frac{1}{bx}+\frac{a}{b^2}\ln{\mid \frac{ax+b}{x} \mid}+C 6.x2(ax+b)dx=bx1+b2alnxax+b+C

7. ∫ x ( a x + b ) 2 d x = 1 a 2 ( ln ⁡ ∣ a x + b ∣ + b a x + b ) + C 7.\int{\frac{x}{(ax+b)^2}dx}=\frac{1}{a^2}(\ln{\mid ax+b \mid}+\frac{b}{ax+b})+C 7.(ax+b)2xdx=a21(lnax+b+ax+bb)+C

8. ∫ x 2 ( a x + b ) 2 d x = 1 a 3 ( a x + b − 2 b ln ⁡ ∣ a x + b ∣ − b 2 a x + b ) + C 8.\int{\frac{x^2}{(ax+b)^2}dx}=\frac{1}{a^3}(ax+b-2b\ln{\mid ax+b \mid-\frac{b^2}{ax+b}})+C 8.(ax+b)2x2dx=a31(ax+b2blnax+bax+bb2)+C

9. ∫ d x x ( a x + b ) 2 = 1 b ( a x + b ) − 1 b 2 ln ⁡ ∣ a x + b x ∣ + C 9.\int{\frac{dx}{x(ax+b)^2}}=\frac{1}{b(ax+b)}-\frac{1}{b^2}\ln{\mid \frac{ax+b}{x} \mid}+C 9.x(ax+b)2dx=b(ax+b)1b21lnxax+b+C

10. ∫ d x x 2 ( a x + b ) 2 = − 1 b 2 [ 2 a x + b x ( a x + b ) + 2 a b ln ⁡ ∣ x a x + b ∣ ] + C 10.\int\frac{dx}{x^2(ax+b)^2}=-\frac{1}{b^2}[\frac{2ax+b}{x(ax+b)}+\frac{2a}{b}\ln|\frac{x}{ax+b}|]+C 10.x2(ax+b)2dx=b21[x(ax+b)2ax+b+b2alnax+bx]+C

11. ∫ x 2 ( a x + b ) 3 d x = 1 a 3 [ 2 b a x + b − b 2 2 ( a x + b ) 2 + ln ⁡ ∣ a x + b ∣ ] + C 11.\int\frac{x^2}{(ax+b)^3}dx=\frac{1}{a^3}[\frac{2b}{ax+b}-\frac{b^2}{2(ax+b)^2}+\ln|ax+b|]+C 11.(ax+b)3x2dx=a31[ax+b2b2(ax+b)2b2+lnax+b]+C

12. ∫ x ( a x + b ) n d x = 1 a 2 [ − 1 ( n − 2 ) ( a x + b ) n − 2 + b ( n − 1 ) ( a x + b ) n − 1 ] + C   ( n ≠ 1 , 2 ) 12.\int\frac{x}{(ax+b)^n}dx=\frac{1}{a^2}[-\frac{1}{(n-2)(ax+b)^{n-2}}+\frac{b}{(n-1)(ax+b)^{n-1}}]+C\,(n≠1,2) 12.(ax+b)nxdx=a21[(n2)(ax+b)n21+(n1)(ax+b)n1b]+C(n=1,2)

13. ∫ x 2 ( a x + b ) n d x = 1 a 3 [ − 1 ( n − 3 ) ( a x + b ) n − 3 + 2 b ( n − 2 ) ( a x + b ) n − 2 − b 2 ( n − 1 ) ( a x + b ) n − 1 ] + C   ( n ≠ 1 , 2 , 3 ) 13.\int\frac{x^2}{(ax+b)^n}dx=\frac{1}{a^3}[-\frac{1}{(n-3)(ax+b)^{n-3}}+\frac{2b}{(n-2)(ax+b)^{n-2}}-\frac{b^2}{(n-1)(ax+b)^{n-1}}]+C\,(n≠1,2,3) 13.(ax+b)nx2dx=a31[(n3)(ax+b)n31+(n2)(ax+b)n22b(n1)(ax+b)n1b2]+C(n=1,2,3)

#############################################################

三.含有 a x 2 + b   ( a > 0 ) ax^2+b\,(a>0) ax2+b(a>0)的形式

1. ∫ d x a x 2 + b d x = { 1 a b arctan ⁡ a b x + C ( b > 0 ) 1 2 − a b ln ⁡ ∣ x − a x + a ∣ + C ( b < 0 ) 1.\int{\frac{dx}{ax^2+b}dx}=\begin{cases}\frac{1}{\sqrt{ab}}\arctan{\sqrt{\frac{a}{b}}x}+C(b>0)\\\frac{1}{2{\sqrt{-ab}}}\ln{\mid\frac{x-a}{x+a} \mid}+C(b<0) \end{cases} 1.ax2+bdxdx={ab 1arctanba x+C(b>0)2ab 1lnx+axa+C(b<0)

2. ∫ x a x 2 + b d x = 1 2 a ln ⁡ ∣ a x 2 + b ∣ + C 2.\int\frac{x}{ax^2+b}dx=\frac{1}{2a}\ln|ax^2+b|+C 2.ax2+bxdx=2a1lnax2+b+C

3. ∫ x 2 a x 2 + b d x = x a − b a ∫ d x a x 2 + b 3.\int\frac{x^2}{ax^2+b}dx=\frac{x}{a}-\frac{b}{a}\int\frac{dx}{ax^2+b} 3.ax2+bx2dx=axabax2+bdx

4. ∫ d x x ( a x 2 + b ) = 1 2 b ln ⁡ x 2 ∣ a x 2 + b ∣ + C 4.\int\frac{dx}{x(ax^2+b)}=\frac{1}{2b}\ln\frac{x^2}{|ax^2+b|}+C 4.x(ax2+b)dx=2b1lnax2+bx2+C

5. ∫ d x x 2 ( a x 2 + b ) = − 1 b x − a b ∫ d x a x 2 + b 5.\int\frac{dx}{x^2(ax^2+b)}=-\frac{1}{bx}-\frac{a}{b}\int\frac{dx}{ax^2+b} 5.x2(ax2+b)dx=bx1baax2+bdx

6. ∫ d x x 3 ( a x 2 + b ) = a 2 b 2 ln ⁡ ∣ a x 2 + b ∣ x 2 − 1 2 b x 2 + C 6.\int\frac{dx}{x^3(ax^2+b)}=\frac{a}{2b^2}\ln\frac{|ax^2+b|}{x^2}-\frac{1}{2bx^2}+C 6.x3(ax2+b)dx=2b2alnx2ax2+b2bx21+C

7. ∫ d x ( a x 2 + b ) 2 = x 2 b ( a x 2 + b ) + 1 2 b ∫ d x a x 2 + b 7.\int\frac{dx}{(ax^2+b)^2}=\frac{x}{2b(ax^2+b)}+\frac{1}{2b}\int\frac{dx}{ax^2+b} 7.(ax2+b)2dx=2b(ax2+b)x+2b1ax2+bdx

#############################################################

四.含有 ± x 2 ± a 2   ( a > 0 ) ±x^2±a^2\,(a>0) ±x2±a2(a>0)的形式
1. ∫ d x x 2 + a 2 = 1 a arctan ⁡ x a + C 1.\int{\frac{dx}{x^2+a^2}}=\frac{1}{a}\arctan{\frac{x}{a}}+C 1.x2+a2dx=a1arctanax+C

2. ∫ d x ( a 2 ± x 2 ) n = 1 2 a 2 ( n − 1 ) [ x ( a 2 ± x 2 ) n − 1 + ( 2 n − 3 ) ∫ d x ( a 2 ± x 2 ) n − 1 ]   ( n ≠ 1 ) 2.\int{\frac{dx}{(a^2±x^2)^n}}=\frac{1}{2a^2(n-1)}[\frac{x}{(a^2±x^2)^{n-1}}+(2n-3)\int{\frac{dx}{(a^2±x^2)^{n-1}}}]\,(n≠1) 2.(a2±x2)ndx=2a2(n1)1[(a2±x2)n1x+(2n3)(a2±x2)n1dx](n=1)

3. ∫ d x x 2 − a 2 = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C 3.\int{\frac{dx}{x^2-a^2}}=\frac{1}{2a}\ln{\mid \frac{x-a}{x+a} \mid}+C 3.x2a2dx=2a1lnx+axa+C

#############################################################

五.含有 a x 2 + b x + c ax^2+bx+c ax2+bx+c的形式
1. ∫ d x a x 2 + b x + c = { 2 4 a c − b 2 a r c t a n 2 a x + b 4 a c − b 2 + C   ( b 2 < 4 a c ) 1 b 2 − 4 a c l n ∣ 2 a x + b − b 2 − 4 a c 2 a x + b + b 2 − 4 a c ∣ + C   ( b 2 > 4 a c ) 1.\int \frac{dx}{ax^2+bx+c}=\begin{cases}\frac{2}{\sqrt{4ac-b^2}}arctan\frac{2ax+b}{\sqrt{4ac-b^2}}+C\,(b^2<4ac)\\ \frac{1}{b^2-4ac}ln|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}|+C\,(b^2>4ac)\end{cases} 1.ax2+bx+cdx={4acb2 2arctan4acb2 2ax+b+C(b2<4ac)b24ac1ln2ax+b+b24ac 2ax+bb24ac +C(b2>4ac)

2. ∫ x a x 2 + b x + c d x = 1 2 a l n ∣ a x 2 + b x + c ∣ − b 2 a ∫ d x a x 2 + b x + c 2.\int \frac{x}{ax^2+bx+c}dx=\frac{1}{2a}ln|ax^2+bx+c|-\frac{b}{2a}\int \frac{dx}{ax^2+bx+c} 2.ax2+bx+cxdx=2a1lnax2+bx+c2abax2+bx+cdx

#############################################################

六.含有 a x + b \sqrt{ax+b} ax+b 的形式

1. ∫ a x + b d x 1.\int{\sqrt{ax+b}dx} 1.ax+b dx = 2 3 a ( a x + b ) 3 + C \frac{2}{3a}\sqrt{(ax+b)^3}+C 3a2(ax+b)3 +C

2. ∫ x a x + b d x 2.\int{x\sqrt{ax+b}dx} 2.xax+b dx = 2 15 a 2 ( 3 a x − 2 b ) ( a x + b ) 3 + C \frac{2}{15a^2}(3ax-2b)\sqrt{(ax+b)^3}+C 15a22(3ax2b)(ax+b)3 +C

3. ∫ x 2 a x + b d x 3.\int{x^2\sqrt{ax+b}dx} 3.x2ax+b dx = 2 15 a 2 ( 15 a 2 x 2 − 12 a b x + 8 b 2 ) ( a x + b ) 3 + C \frac{2}{15a^2}(15a^2x^2-12abx+8b^2)\sqrt{(ax+b)^3}+C 15a22(15a2x212abx+8b2)(ax+b)3 +C

4. ∫ x n a x + b d x = 2 a ( 2 n + 3 ) [ x n ( a x + b ) 3 2 − n b ∫ x n − 1 a x + b d x ] 4.\int{x^n\sqrt{ax+b}}dx=\frac{2}{a(2n+3)}[x^n(ax+b)^{\frac{3}{2}}-nb\int x^{n-1}\sqrt{ax+b}dx] 4.xnax+b dx=a(2n+3)2[xn(ax+b)23nbxn1ax+b dx]

5. ∫ x a x + b d x = 2 3 a 2 ( a x − 2 b ) a x + b + C 5.\int{\frac{x}{\sqrt{ax+b}}dx}=\frac{2}{3a^2}(ax-2b)\sqrt{ax+b}+C 5.ax+b xdx=3a22(ax2b)ax+b +C

6. ∫ x 2 a x + b d x = 2 15 a 3 ( 3 a 2 x 2 − 4 a b c x + 8 b 2 ) a x + b + C 6.\int{\frac{x^2}{\sqrt{ax+b}}dx}=\frac{2}{15a^3}(3a^2x^2-4abcx+8b^2)\sqrt{ax+b}+C 6.ax+b x2dx=15a32(3a2x24abcx+8b2)ax+b +C

7. ∫ x n a x + b d x = 2 ( 2 n + 1 ) a ( x n a x + b − n b ∫ x n − 1 a x + b d x ) 7.\int\frac{x^n}{\sqrt{ax+b}}dx=\frac{2}{(2n+1)a}(x^n\sqrt{ax+b}-nb\int\frac{x^{n-1}}{\sqrt{ax+b}}dx) 7.ax+b xndx=(2n+1)a2(xnax+b nbax+b xn1dx)

8. ∫ d x x a x + b = { 1 b ln ⁡ ∣ a x + b − b a x + b + b ∣ + C ( b > 0 ) 2 − b arctan ⁡ a x + b − b + C ( b < 0 ) 8.\int{\frac{dx}{x\sqrt{ax+b}}}=\begin{cases} \frac{1}{\sqrt{b}}\ln{\mid \frac{\sqrt{ax+b}-\sqrt{b}}{\sqrt{ax+b}+\sqrt{b}} \mid}+C(b>0)\\\frac{2}{\sqrt{-b}}\arctan{\sqrt{\frac{ax+b}{-b}}}+C(b<0) \end{cases} 8.xax+b dx=b 1lnax+b +b ax+b b +C(b>0)b 2arctanbax+b +C(b<0)

9. ∫ d x x 2 a x + b d x = − a x + b b x − a 2 b ∫ d x x a x + b 9.\int{\frac{dx}{x^2\sqrt{ax+b}}dx}=-\frac{\sqrt{ax+b}}{bx}-\frac{a}{2b}\int{\frac{dx}{x\sqrt{ax+b}}} 9.x2ax+b dxdx=bxax+b 2baxax+b dx

10. ∫ d x x n a x + b = − 1 b ( n − 1 ) [ a x + b x n − 1 + a ( 2 n − 3 ) 2 ∫ d x x n − 1 a x + b ]   ( n ≠ − 1 ) 10.\int\frac{dx}{x^n\sqrt{ax+b}}=-\frac{1}{b(n-1)}[\frac{\sqrt{ax+b}}{x^{n-1}}+\frac{a(2n-3)}{2}\int\frac{dx}{x^{n-1}\sqrt{ax+b}}]\,(n≠-1) 10.xnax+b dx=b(n1)1[xn1ax+b +2a(2n3)xn1ax+b dx](n=1)

11. ∫ a x + b x d x = 2 a x + b + b ∫ d x x a x + b 11.\int{\frac{\sqrt{ax+b}}{x}dx}=2\sqrt{ax+b}+b\int{\frac{dx}{x\sqrt{ax+b}}} 11.xax+b dx=2ax+b +bxax+b dx

12. ∫ a x + b x 2 d x = − a x + b x + a 2 ∫ d x x a x + b 12.\int{\frac{\sqrt{ax+b}}{x^2}dx}=-\frac{\sqrt{ax+b}}{x}+\frac{a}{2}\int{\frac{dx}{x\sqrt{ax+b}}} 12.x2ax+b dx=xax+b +2axax+b dx

13. ∫ a x + b x n d x = − 1 b ( n − 1 ) [ ( a x + b ) 3 2 x n − 1 + ( 2 n − 5 ) a 2 ∫ a x + b x n − 1 d x ]   ( n ≠ − 1 ) 13.\int{\frac{\sqrt{ax+b}}{x^n}dx}=-\frac{1}{b(n-1)}[\frac{(ax+b)^{\frac{3}{2}}}{x^{n-1}}+\frac{(2n-5)a}{2}\int{\frac{\sqrt{ax+b}}{x^{n-1}}dx}]\,(n≠-1) 13.xnax+b dx=b(n1)1[xn1(ax+b)23+2(2n5)axn1ax+b dx](n=1)

#############################################################

七.含有 ± a x 2 + b x + c   ( a > 0 ) \sqrt{±ax^2+bx+c}\,(a>0) ±ax2+bx+c (a>0)的形式

1. ∫ d x a x 2 + b x + c = 1 a ln ⁡ ∣ 2 a x + b + 2 a a x 2 + b x + c ∣ + C 1.\int\frac{dx}{\sqrt{ax^2+bx+c}}=\frac{1}{\sqrt{a}}\ln|2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}|+C 1.ax2+bx+c dx=a 1ln2ax+b+2a ax2+bx+c +C

2. ∫ a x 2 + b x + c d x = 2 a x + b 4 a a x 2 + b x + c + 4 a c − b 2 8 a 3 2 ln ⁡ ∣ 2 a x + b + 2 a a x 2 + b x + c ∣ + C 2.\int\sqrt{ax^2+bx+c}dx=\frac{2ax+b}{4a}\sqrt{ax^2+bx+c}+\frac{4ac-b^2}{8a^{\frac{3}{2}}}\ln|2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}|+C 2.ax2+bx+c dx=4a2ax+bax2+bx+c +8a234acb2ln2ax+b+2a ax2+bx+c +C

3. ∫ x a x 2 + b x + c d x = 1 a a x 2 + b x + c − b 2 a 3 2 ln ⁡ ∣ 2 a x + b + 2 a a x 2 + b x + c ∣ + C 3.\int\frac{x}{\sqrt{ax^2+bx+c}}dx=\frac{1}{a}\sqrt{ax^2+bx+c}-\frac{b}{2a^{\frac{3}{2}}}\ln|2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}|+C 3.ax2+bx+c xdx=a1ax2+bx+c 2a23bln2ax+b+2a ax2+bx+c +C

4. ∫ d x − a x 2 + b x + c = 1 a arcsin ⁡ 2 a x − b b 2 + 4 a c + C 4.\int\frac{dx}{\sqrt{-ax^2+bx+c}}=\frac{1}{\sqrt{a}}\arcsin\frac{2ax-b}{\sqrt{b^2+4ac}}+C 4.ax2+bx+c dx=a 1arcsinb2+4ac 2axb+C

5. ∫ − a x 2 + b x + c d x = 2 a x − b 4 a − a x 2 + b x + c + 4 a c + b 2 8 a 3 2 arcsin ⁡ 2 a x − b b 2 + 4 a c + C 5.\int\sqrt{-ax^2+bx+c}dx=\frac{2ax-b}{4a}\sqrt{-ax^2+bx+c}+\frac{4ac+b^2}{8a^{\frac{3}{2}}}\arcsin\frac{2ax-b}{\sqrt{b^2+4ac}}+C 5.ax2+bx+c dx=4a2axbax2+bx+c +8a234ac+b2arcsinb2+4ac 2axb+C

6. ∫ x − a x 2 + b x + c d x = − 1 a − a x 2 + b x + c + b 2 a 3 2 arcsin ⁡ 2 a x − b b 2 + 4 a c + C 6.\int\frac{x}{\sqrt{-ax^2+bx+c}}dx=-\frac{1}{a}\sqrt{-ax^2+bx+c}+\frac{b}{2a^{\frac{3}{2}}}\arcsin\frac{2ax-b}{\sqrt{b^2+4ac}}+C 6.ax2+bx+c xdx=a1ax2+bx+c +2a23barcsinb2+4ac 2axb+C

#############################################################

八.含有 x 2 ± a 2 ( a > 0 ) \sqrt{x^2±a^2}(a>0) x2±a2 (a>0)的形式

1. ∫ x 2 ± a 2 d x = 1 2 ( x x 2 ± a 2 ± a 2 l n   ∣ x + x 2 ± a 2 ∣ ) + C 1.\int\sqrt{x^2±a^2}dx=\frac{1}{2}(x\sqrt{x^2±a^2}±a^2ln\,|x+\sqrt{x^2±a^2}|)+C 1.x2±a2 dx=21(xx2±a2 ±a2lnx+x2±a2 )+C

2. ∫ ( x 2 + a 2 ) 3 2 = x 8 ( 2 x 2 + 5 a 2 ) x 2 + a 2 + 3 8 a 4 ln ⁡ ( x + x 2 + a 2 ) + C 2.\int(x^2+a^2)^{\frac{3}{2}}=\frac{x}{8}(2x^2+5a^2)\sqrt{x^2+a^2}+\frac{3}{8}a^4\ln(x+\sqrt{x^2+a^2})+C 2.(x2+a2)23=8x(2x2+5a2)x2+a2 +83a4ln(x+x2+a2 )+C

3. ∫ ( x 2 − a 2 ) 3 2 = x 8 ( 2 x 2 − 5 a 2 ) x 2 − a 2 + 3 8 a 4 ln ⁡ ∣ x + x 2 − a 2 ∣ + C 3.\int(x^2-a^2)^{\frac{3}{2}}=\frac{x}{8}(2x^2-5a^2)\sqrt{x^2-a^2}+\frac{3}{8}a^4\ln|x+\sqrt{x^2-a^2}|+C 3.(x2a2)23=8x(2x25a2)x2a2 +83a4lnx+x2a2 +C

4. ∫ x x 2 ± a 2 d x = 1 3 ( x 2 ± a 2 ) 3 2 + C 4.\int x\sqrt{x^2±a^2}dx=\frac{1}{3}(x^2±a^2)^{\frac{3}{2}}+C 4.xx2±a2 dx=31(x2±a2)23+C

5. ∫ x 2 x 2 ± a 2 d x = 1 8 [ x ( 2 x 2 ± a 2 ) x 2 ± a 2 − a 4 l n   ∣ x + x 2 ± a 2 ∣ ] + C 5.\int x^2\sqrt{x^2±a^2}dx=\frac{1}{8}[x(2x^2±a^2)\sqrt{x^2±a^2}-a^4ln\,|x+\sqrt{x^2±a^2}|]+C 5.x2x2±a2 dx=81[x(2x2±a2)x2±a2 a4lnx+x2±a2 ]+C

6. ∫ 1 x x 2 + a 2 d x = x 2 + a 2 − a l n   ∣ a + x 2 + a 2 x ∣ + C 6.\int\frac{1}{x}\sqrt{x^2+a^2}dx=\sqrt{x^2+a^2}-aln\,|\frac{a+\sqrt{x^2+a^2}}{x}|+C 6.x1x2+a2 dx=x2+a2 alnxa+x2+a2 +C

7. ∫ 1 x x 2 − a 2 d x = x 2 − a 2 − a arccos ⁡ a x + C 7.\int\frac{1}{x}\sqrt{x^2-a^2}dx=\sqrt{x^2-a^2}-a\arccos\frac{a}{x}+C 7.x1x2a2 dx=x2a2 aarccosxa+C

8. ∫ 1 x 2 x 2 ± a 2 d x = − 1 x x 2 ± a 2 + l n   ∣ x + x 2 ± a 2 ∣ + C 8.\int\frac{1}{x^2}\sqrt{x^2±a^2}dx=-\frac{1}{x}\sqrt{x^2±a^2}+ln\,|x+\sqrt{x^2±a^2}|+C 8.x21x2±a2 dx=x1x2±a2 +lnx+x2±a2 +C

9. ∫ d x x 2 + a 2 = a r s h x a + C = l n   ∣ x + x 2 + a 2 ∣ + C 9.\int\frac{dx}{\sqrt{x^2+a^2}}=arsh\frac{x}{a}+C=ln\,|x+\sqrt{x^2+a^2}|+C 9.x2+a2 dx=arshax+C=lnx+x2+a2 +C

10. ∫ d x x 2 − a 2 = x ∣ x ∣ a r s h ∣ x ∣ a + C = l n   ∣ x + x 2 − a 2 ∣ + C 10.\int\frac{dx}{\sqrt{x^2-a^2}}=\frac{x}{|x|}arsh\frac{|x|}{a}+C=ln\,|x+\sqrt{x^2-a^2}|+C 10.x2a2 dx=xxarshax+C=lnx+x2a2 +C

11. ∫ x x 2 ± a 2 d x = x 2 ± a 2 + C 11.\int\frac{x}{\sqrt{x^2±a^2}}dx=\sqrt{x^2±a^2}+C 11.x2±a2 xdx=x2±a2 +C

12. ∫ x 2 x 2 ± a 2 d x = 1 2 ( x x 2 ± a 2 ∓ a 2 l n   ∣ x + x 2 ± a 2 ∣ ) + C 12.\int\frac{x^2}{\sqrt{x^2±a^2}}dx=\frac{1}{2}(x\sqrt{x^2±a^2}∓a^2ln\,|x+\sqrt{x^2±a^2}|)+C 12.x2±a2 x2dx=21(xx2±a2 a2lnx+x2±a2 )+C

13. ∫ d x x x 2 + a 2 = − 1 a l n   ∣ a + x 2 + a 2 x ∣ + C 13.\int\frac{dx}{x\sqrt{x^2+a^2}}=-\frac{1}{a}ln\,|\frac{a+\sqrt{x^2+a^2}}{x}|+C 13.xx2+a2 dx=a1lnxa+x2+a2 +C

14. ∫ d x x x 2 − a 2 = 1 a arccos ⁡ a x + C 14.\int\frac{dx}{x\sqrt{x^2-a^2}}=\frac{1}{a}\arccos\frac{a}{x}+C 14.xx2a2 dx=a1arccosxa+C

15. ∫ d x x 2 x 2 ± a 2 = ∓ x 2 ± a 2 a 2 x + C 15.\int\frac{dx}{x^2\sqrt{x^2±a^2}}=∓\frac{\sqrt{x^2±a^2}}{a^2x}+C 15.x2x2±a2 dx=a2xx2±a2 +C

16. ∫ d x ( x 2 ± a 2 ) 3 2 = ± x a 2 x 2 ± a 2 + C 16.\int\frac{dx}{(x^2±a^2)^{\frac{3}{2}}}=\frac{±x}{a^2\sqrt{x^2±a^2}}+C 16.(x2±a2)23dx=a2x2±a2 ±x+C

17. ∫ x ( x 2 ± a 2 ) 3 2 d x = − 1 x 2 ± a 2 + C 17.\int\frac{x}{(x^2±a^2)^{\frac{3}{2}}}dx=-\frac{1}{\sqrt{x^2±a^2}}+C 17.(x2±a2)23xdx=x2±a2 1+C

18. ∫ x 2 ( x 2 ± a 2 ) 3 2 d x = − x x 2 ± a 2 + ln ⁡ ( x + x 2 ± a 2 ) + C 18.\int\frac{x^2}{(x^2±a^2)^{\frac{3}{2}}}dx=-\frac{x}{\sqrt{x^2±a^2}}+\ln(x+\sqrt{x^2±a^2})+C 18.(x2±a2)23x2dx=x2±a2 x+ln(x+x2±a2 )+C

#############################################################

九.含有 a 2 − x 2 ( a > 0 ) \sqrt{a^2-x^2}(a>0) a2x2 (a>0)的形式*

1. ∫ a 2 − x 2 d x = 1 2 ( x a 2 − x 2 + a 2 arcsin ⁡ x a ) + C 1.\int\sqrt{a^2-x^2}dx=\frac{1}{2}(x\sqrt{a^2-x^2}+a^2\arcsin\frac{x}{a})+C 1.a2x2 dx=21(xa2x2 +a2arcsinax)+C

2. ∫ ( a 2 − x 2 ) 3 2 d x = 5 8 ( 5 a 2 − 2 x 2 ) a 2 − x 2 + 3 8 a 4 arcsin ⁡ x a + C 2.\int(a^2-x^2)^{\frac{3}{2}}dx=\frac{5}{8}(5a^2-2x^2)\sqrt{a^2-x^2}+\frac{3}{8}a^4\arcsin\frac{x}{a}+C 2.(a2x2)23dx=85(5a22x2)a2x2 +83a4arcsinax+C

3. ∫ x a 2 − x 2 d x = − 1 3 ( a 2 − x 2 ) 3 2 + C 3.\int x\sqrt{a^2-x^2}dx=-\frac{1}{3}(a^2-x^2)^{\frac{3}{2}}+C 3.xa2x2 dx=31(a2x2)23+C

4. ∫ x 2 a 2 − x 2 d x = 1 8 [ x ( 2 x 2 − a 2 ) a 2 − x 2 + a 4 arcsin ⁡ x a ] + C 4.\int x^2\sqrt{a^2-x^2}dx=\frac{1}{8}[x(2x^2-a^2)\sqrt{a^2-x^2}+a^4\arcsin\frac{x}{a}]+C 4.x2a2x2 dx=81[x(2x2a2)a2x2 +a4arcsinax]+C

5. ∫ 1 x a 2 − x 2 d x = a 2 − x 2 − a ln ⁡ ∣ a + a 2 − x 2 x ∣ + C 5.\int\frac{1}{x}\sqrt{a^2-x^2}dx=\sqrt{a^2-x^2}-a\ln|\frac{a+\sqrt{a^2-x^2}}{x}|+C 5.x1a2x2 dx=a2x2 alnxa+a2x2 +C

6. ∫ 1 x 2 a 2 − x 2 d x = − 1 x a 2 − x 2 − arcsin ⁡ x a + C 6.\int\frac{1}{x^2}\sqrt{a^2-x^2}dx=-\frac{1}{x}\sqrt{a^2-x^2}-\arcsin\frac{x}{a}+C 6.x21a2x2 dx=x1a2x2 arcsinax+C

7. ∫ d x a 2 − x 2 arcsin ⁡ x a + C 7.\int\frac{dx}{\sqrt{a^2-x^2}}\arcsin\frac{x}{a}+C 7.a2x2 dxarcsinax+C

8. ∫ d x x a 2 − x 2 = − 1 a ln ⁡ ∣ a + a 2 − x 2 x ∣ + C 8.\int\frac{dx}{x\sqrt{a^2-x^2}}=-\frac{1}{a}\ln|\frac{a+\sqrt{a^2-x^2}}{x}|+C 8.xa2x2 dx=a1lnxa+a2x2 +C

9. ∫ d x x 2 a 2 − x 2 = − a 2 − x 2 a 2 x + C 9.\int\frac{dx}{x^2\sqrt{a^2-x^2}}=-\frac{\sqrt{a^2-x^2}}{a^2x}+C 9.x2a2x2 dx=a2xa2x2 +C

10. ∫ x a 2 − x 2 d x = − a 2 − x 2 + C 10.\int\frac{x}{\sqrt{a^2-x^2}}dx=-\sqrt{a^2-x^2}+C 10.a2x2 xdx=a2x2 +C

11. ∫ x 2 a 2 − x 2 d x = 1 2 ( − x a 2 − x 2 + a 2 arcsin ⁡ x a ) + C 11.\int\frac{x^2}{\sqrt{a^2-x^2}}dx=\frac{1}{2}(-x\sqrt{a^2-x^2}+a^2\arcsin\frac{x}{a})+C 11.a2x2 x2dx=21(xa2x2 +a2arcsinax)+C

12. ∫ d x ( a 2 − x 2 ) 3 2 = x a 2 a 2 − x 2 + C 12.\int\frac{dx}{(a^2-x^2)^{\frac{3}{2}}}=\frac{x}{a^2\sqrt{a^2-x^2}}+C 12.(a2x2)23dx=a2a2x2 x+C

13. ∫ x ( a 2 − x 2 ) 3 2 d x = 1 a 2 − x 2 + C 13.\int\frac{x}{(a^2-x^2)^{\frac{3}{2}}}dx=\frac{1}{\sqrt{a^2-x^2}}+C 13.(a2x2)23xdx=a2x2 1+C

14. ∫ x 2 ( a 2 − x 2 ) 3 2 d x = x a 2 − x 2 − arcsin ⁡ x a + C 14.\int\frac{x^2}{(a^2-x^2)^{\frac{3}{2}}}dx=\frac{x}{\sqrt{a^2-x^2}}-\arcsin\frac{x}{a}+C 14.(a2x2)23x2dx=a2x2 xarcsinax+C

#############################################################

十.含有 ± x − a x − b \sqrt{±\frac{x-a}{x-b}} ±xbxa ( x − a ) ( b − x ) \sqrt{(x-a)(b-x)} (xa)(bx) 的形式

1. ∫ x − a x − b = ( x − b ) x − a x − b + ( b − a ) ln ⁡ ( ∣ x − a ∣ + ∣ x − b ∣ ) + C 1.\int\sqrt{\frac{x-a}{x-b}}=(x-b)\sqrt{\frac{x-a}{x-b}}+(b-a)\ln(\sqrt{|x-a|}+\sqrt{|x-b|})+C 1.xbxa =(xb)xbxa +(ba)ln(xa +xb )+C

2. ∫ − x − a x − b = ( x − b ) − x − a x − b + ( b − a ) arcsin ⁡ x − a b − a + C 2.\int\sqrt{-\frac{x-a}{x-b}}=(x-b)\sqrt{-\frac{x-a}{x-b}}+(b-a)\arcsin\sqrt{\frac{x-a}{b-a}}+C 2.xbxa =(xb)xbxa +(ba)arcsinbaxa +C

3. ∫ d x ( x − a ) ( b − x ) = 2 arcsin ⁡ x − a b − a + C   ( a < b ) 3.\int\frac{dx}{\sqrt{(x-a)(b-x)}}=2\arcsin\sqrt{\frac{x-a}{b-a}}+C\,(a<b) 3.(xa)(bx) dx=2arcsinbaxa +C(a<b)

4. ∫ ( x − a ) ( b − x ) d x = 2 x − a − b 4 ( x − a ) ( b − x ) + ( b − a ) 2 4 arcsin ⁡ x − a b − a + C   ( a < b ) 4.\int\sqrt{(x-a)(b-x)}dx=\frac{2x-a-b}{4}\sqrt{(x-a)(b-x)}+\frac{(b-a)^2}{4}\arcsin\sqrt{\frac{x-a}{b-a}}+C\,(a<b) 4.(xa)(bx) dx=42xab(xa)(bx) +4(ba)2arcsinbaxa +C(a<b)

#############################################################

十一.含有 s i n   x , c o s   x sin\,x,cos\,x sinx,cosx的形式

1. ∫ s i n   x   d x = − c o s   x + C 1.\int sin\,x\,dx=-cos\,x+C 1.sinxdx=cosx+C

2. ∫ c o s   x   d x = s i n   x + C 2.\int cos\,x\,dx=sin\,x+C 2.cosxdx=sinx+C

3. ∫ s i n 2 x   d x = x 2 − 1 4 s i n   2 x + C 3.\int sin^2x\,dx=\frac{x}{2}-\frac{1}{4}sin\,2x+C 3.sin2xdx=2x41sin2x+C

4. ∫ c o s 2 x   d x = x 2 + 1 4 s i n   2 x + C 4.\int cos^2x\,dx=\frac{x}{2}+\frac{1}{4}sin\,2x+C 4.cos2xdx=2x+41sin2x+C

5. ∫ s i n n x   d x = − 1 n s i n n − 1 x   c o s   x + n − 1 n ∫ s i n n − 2 x   d x 5.\int sin^nx\,dx=-\frac{1}{n}sin^{n-1}x\,cos\,x+\frac{n-1}{n}\int sin^{n-2}x\,dx 5.sinnxdx=n1sinn1xcosx+nn1sinn2xdx

6. ∫ c o s n x   d x = 1 n c o s n − 1 x   s i n   x + n − 1 n ∫ c o s n − 2 x   d x 6.\int cos^nx\,dx=\frac{1}{n}cos^{n-1}x\,sin\,x+\frac{n-1}{n}\int cos^{n-2}x\,dx 6.cosnxdx=n1cosn1xsinx+nn1cosn2xdx

7. ∫ c o s m x   s i n n x   d x = 1 m + n c o s m − 1 x   s i n n + 1 x + m − 1 m + n ∫ c o s m − 2 s i n n x   d x     = − 1 m + n c o s m + 1 x   s i n n − 1 x + n − 1 m + n ∫ c o s m s i n n − 2 x   d x 7.\int cos^mx\,sin^nx\,dx=\frac{1}{m+n}cos^{m-1}x\,sin^{n+1}x+\frac{m-1}{m+n}\int cos^{m-2}sin^nx\,dx\\\qquad\qquad\qquad\qquad\:\:\,=-\frac{1}{m+n}cos^{m+1}x\,sin^{n-1}x+\frac{n-1}{m+n}\int cos^msin^{n-2}x\,dx 7.cosmxsinnxdx=m+n1cosm1xsinn+1x+m+nm1cosm2sinnxdx=m+n1cosm+1xsinn1x+m+nn1cosmsinn2xdx

8. ∫ sin ⁡ a x cos ⁡ b x   d x = − 1 2 ( a + b ) cos ⁡   ( a + b ) x − 1 2 ( a − b ) cos ⁡   ( a − b ) x + C 8.\int \sin ax\cos bx\,dx=-\frac{1}{2(a+b)}\cos\,(a+b)x-\frac{1}{2(a-b)}\cos\,(a-b)x+C 8.sinaxcosbxdx=2(a+b)1cos(a+b)x2(ab)1cos(ab)x+C

9. ∫ sin ⁡ a x sin ⁡ b x   d x = − 1 2 ( a + b ) sin ⁡   ( a + b ) x + 1 2 ( a − b ) sin ⁡   ( a − b ) x + C 9.\int\sin ax\sin bx\,dx=-\frac{1}{2(a+b)}\sin\,(a+b)x+\frac{1}{2(a-b)}\sin\,(a-b)x+C 9.sinaxsinbxdx=2(a+b)1sin(a+b)x+2(ab)1sin(ab)x+C

10. ∫ cos ⁡ a x cos ⁡ b x   d x = 1 2 ( a + b ) sin ⁡   ( a + b ) x + 1 2 ( a − b ) sin ⁡   ( a − b ) x + C 10.\int\cos ax\cos bx\,dx=\frac{1}{2(a+b)}\sin\,(a+b)x+\frac{1}{2(a-b)}\sin\,(a-b)x+C 10.cosaxcosbxdx=2(a+b)1sin(a+b)x+2(ab)1sin(ab)x+C

11. ∫ x sin ⁡ x d x = sin ⁡ x − x cos ⁡ x + C 11.\int x\sin{x}dx=\sin{x}-x\cos{x}+C 11.xsinxdx=sinxxcosx+C

12. ∫ x cos ⁡ x d x = cos ⁡ x + x sin ⁡ x + C 12.\int x\cos{x}dx=\cos{x}+x\sin{x}+C 12.xcosxdx=cosx+xsinx+C

13. ∫ x n sin ⁡ x d x = − x n cos ⁡ x + n ∫ x n − 1 cos ⁡ x d x 13.\int x^n\sin{x}dx=-x^n\cos{x}+n\int x^{n-1}\cos{x}dx 13.xnsinxdx=xncosx+nxn1cosxdx

14. ∫ x n cos ⁡ x d x = x n sin ⁡ x − n ∫ x n − 1 sin ⁡ x d x 14.\int x^n\cos{x}dx=x^n\sin{x}-n\int x^{n-1}\sin{x}dx 14.xncosxdx=xnsinxnxn1sinxdx

15. ∫ d x s i n n x = − 1 n − 1 ⋅ c o s   x s i n n − 1 x + n − 2 n − 1 ∫ d x s i n n − 2 x 15.\int\frac{dx}{sin^nx}=-\frac{1}{n-1}·\frac{cos\,x}{sin^{n-1}x}+\frac{n-2}{n-1}\int\frac{dx}{sin^{n-2}x} 15.sinnxdx=n11sinn1xcosx+n1n2sinn2xdx

16. ∫ d x c o s n x = 1 n − 1 ⋅ s i n   x c o s n − 1 x + n − 2 n − 1 ∫ d x c o s n − 2 x 16.\int\frac{dx}{cos^nx}=\frac{1}{n-1}·\frac{sin\,x}{cos^{n-1}x}+\frac{n-2}{n-1}\int\frac{dx}{cos^{n-2}x} 16.cosnxdx=n11cosn1xsinx+n1n2cosn2xdx

17. ∫ d x 1 ± sin ⁡ x = tan ⁡ x ∓ sec ⁡ x + C 17.\int\frac{dx}{1±\sin{x}}=\tan{x}∓\sec{x}+C 17.1±sinxdx=tanxsecx+C

18. ∫ d x 1 ± cos ⁡ x = − cot ⁡ x ± csc ⁡ x + C 18.\int\frac{dx}{1±\cos{x}}=-\cot{x}±\csc{x}+C 18.1±cosxdx=cotx±cscx+C

19. ∫ d x sin ⁡ x cos ⁡ x = ln ⁡ ∣ tan ⁡ x ∣ + C 19.\int\frac{dx}{\sin{x}\cos{x}}=\ln|\tan{x}|+C 19.sinxcosxdx=lntanx+C

#############################################################

十二.含有 t a n   x , c o t   x , s e c   x , c s c   x tan\,x,cot\,x,sec\,x,csc\,x tanx,cotx,secx,cscx的形式

1. ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C 1.\int\tan{x}dx=-\ln|\cos x|+C 1.tanxdx=lncosx+C

2. ∫ tan ⁡ 2 x d x = − x + t a n   x + C 2.\int \tan^2{x}dx=-x+tan\,x+C 2.tan2xdx=x+tanx+C

3. ∫ tan ⁡ n x d x = tan ⁡ n − 1 x n − 1 − ∫ tan ⁡ n − 2 x d x   ( n ≠ 1 ) 3.\int \tan^n{x}dx=\frac{\tan^{n-1}{x}}{n-1}-\int\tan^{n-2}{x}dx\,(n≠1) 3.tannxdx=n1tann1xtann2xdx(n=1)

4. ∫ c o t   x   d x = ln ⁡ ∣ s i n   x ∣ + C 4.\int cot\,x\,dx=\ln|sin\,x|+C 4.cotxdx=lnsinx+C

5. ∫ cot ⁡ 2 x d x = − x − c o t   x + C 5.\int\cot^2{x}dx=-x-cot\,x+C 5.cot2xdx=xcotx+C

6. ∫ cot ⁡ n x d x = − cot ⁡ n − 1 x n − 1 − ∫ cot ⁡ n − 2 x d x   ( n ≠ 1 ) 6.\int\cot^n{x}dx=-\frac{\cot^{n-1}{x}}{n-1}-\int\cot^{n-2}{x}dx\,(n≠1) 6.cotnxdx=n1cotn1xcotn2xdx(n=1)

7. ∫ s e c   x   d x = ln ⁡ ∣ t a n ( π 4 + x 2 ) ∣ + C = ln ⁡ ∣ s e c   x + t a n   x ∣ + C 7.\int sec\,x\,dx=\ln|tan(\frac{\pi}{4}+\frac{x}{2})|+C=\ln|sec\,x+tan\,x|+C 7.secxdx=lntan(4π+2x)+C=lnsecx+tanx+C

8. ∫ s e c 2 x   d x = t a n   x + C 8.\int sec^2x\,dx=tan\,x+C 8.sec2xdx=tanx+C

9. ∫ sec ⁡ n x   d x = sec ⁡ n − 2 x tan ⁡ x n − 1 + n − 2 n − 1 ∫ sec ⁡ n − 2 x d x   ( n ≠ 1 ) 9.\int\sec^n{x}\,dx=\frac{\sec^{n-2}{x}\tan{x}}{n-1}+\frac{n-2}{n-1}\int\sec^{n-2}{x}dx\,(n≠1) 9.secnxdx=n1secn2xtanx+n1n2secn2xdx(n=1)

10. ∫ c s c   x   d x = ln ⁡ ∣ t a n x 2 ∣ + C = ln ⁡ ∣ c s c   x − c o t   x ∣ + C 10.\int csc\,x\,dx=\ln|tan\frac{x}{2}|+C=\ln|csc\,x-cot\,x|+C 10.cscxdx=lntan2x+C=lncscxcotx+C

11. ∫ c s c 2 x   d x = − c o t   x + C 11.\int csc^2x\,dx=-cot\,x+C 11.csc2xdx=cotx+C

12. ∫ csc ⁡ n x   d x = − csc ⁡ n − 2 x cot ⁡ x n − 1 + n − 2 n − 1 ∫ csc ⁡ n − 2 x d x   ( n ≠ 1 ) 12.\int\csc^n{x}\,dx=-\frac{\csc^{n-2}{x}\cot{x}}{n-1}+\frac{n-2}{n-1}\int\csc^{n-2}{x}dx\,(n≠1) 12.cscnxdx=n1cscn2xcotx+n1n2cscn2xdx(n=1)

13. ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C 13.\int\sec{x}\tan{x}dx=\sec{x}+C 13.secxtanxdx=secx+C

14. ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C 14.\int\csc{x}\cot{x}dx=-\csc{x}+C 14.cscxcotxdx=cscx+C

15. ∫ d x 1 ± tan ⁡ x = 1 2 ( x ± ln ⁡ ∣ cos ⁡ x ± sin ⁡ x ∣ ) + C 15.\int\frac{dx}{1±\tan{x}}=\frac{1}{2}(x±\ln|\cos{x}±\sin{x}|)+C 15.1±tanxdx=21(x±lncosx±sinx)+C

16. ∫ d x 1 ± cot ⁡ x = 1 2 ( x ∓ ln ⁡ ∣ sin ⁡ x ± cos ⁡ x ∣ ) + C 16.\int\frac{dx}{1±\cot{x}}=\frac{1}{2}(x∓\ln|\sin{x}±\cos{x}|)+C 16.1±cotxdx=21(xlnsinx±cosx)+C

17. ∫ d x 1 ± sec ⁡ x = x + cot ⁡ x ∓ csc ⁡ x + C 17.\int\frac{dx}{1±\sec{x}}=x+\cot{x}∓\csc{x}+C 17.1±secxdx=x+cotxcscx+C

18. ∫ d x 1 ± cot ⁡ x = x − tan ⁡ x ± sec ⁡ x + C 18.\int\frac{dx}{1±\cot{x}}=x-\tan{x}±\sec{x}+C 18.1±cotxdx=xtanx±secx+C

#############################################################

十三.含有反三角函数的形式

1. ∫ arcsin ⁡ x d x = x arcsin ⁡ x + 1 − x 2 + C 1.\int\arcsin{x}dx=x\arcsin{x}+\sqrt{1-x^2}+C 1.arcsinxdx=xarcsinx+1x2 +C

2. ∫ arccos ⁡ x d x = x arccos ⁡ x − 1 − x 2 + C 2.\int\arccos{x}dx=x\arccos{x}-\sqrt{1-x^2}+C 2.arccosxdx=xarccosx1x2 +C

3. ∫ arctan ⁡ x d x = x arctan ⁡ x − 1 2 ln ⁡ ( 1 + x 2 ) + C 3.\int\arctan{x}dx=x\arctan{x}-\frac{1}{2}\ln(1+x^2)+C 3.arctanxdx=xarctanx21ln(1+x2)+C

4. ∫ arccot   x d x = x arccot   x + 1 2 ln ⁡ ( 1 + x 2 ) + C 4.\int\text{arccot}\,xdx=x\text{arccot}\,x+\frac{1}{2}\ln(1+x^2)+C 4.arccotxdx=xarccotx+21ln(1+x2)+C

5. ∫ arcsec   x d x = x arcsec   x − ln ⁡ ∣ x + x 2 − 1 ∣ + C 5.\int\text{arcsec}\,xdx=x\text{arcsec}\,x-\ln|x+\sqrt{x^2-1}|+C 5.arcsecxdx=xarcsecxlnx+x21 +C

6. ∫ arccsc   x d x = x arccsc   x + ln ⁡ ∣ x + x 2 − 1 ∣ + C 6.\int\text{arccsc}\,xdx=x\text{arccsc}\,x+\ln|x+\sqrt{x^2-1}|+C 6.arccscxdx=xarccscx+lnx+x21 +C

7. ∫ x arcsin ⁡ x d x = 1 4 [ x 1 − x 2 + ( 2 x 2 − 1 ) arcsin ⁡ x ] + C 7.\int x\arcsin{x}dx=\frac{1}{4}[x\sqrt{1-x^2}+(2x^2-1)\arcsin{x}]+C 7.xarcsinxdx=41[x1x2 +(2x21)arcsinx]+C

8. ∫ x arccos ⁡ x d x = 1 4 [ − x 1 − x 2 + ( 2 x 2 − 1 ) arccos ⁡ x ] + C 8.\int x\arccos{x}dx=\frac{1}{4}[-x\sqrt{1-x^2}+(2x^2-1)\arccos{x}]+C 8.xarccosxdx=41[x1x2 +(2x21)arccosx]+C

9. ∫ x arctan ⁡ x d x = 1 2 [ ( 1 + x 2 ) arctan ⁡ x − x ] + C 9.\int x\arctan{x}dx=\frac{1}{2}[(1+x^2)\arctan{x}-x]+C 9.xarctanxdx=21[(1+x2)arctanxx]+C

10. ∫ x arccot   x d x = 1 2 [ ( 1 + x 2 ) arccot   x + x ] + C 10.\int x\text{arccot}\,xdx=\frac{1}{2}[(1+x^2)\text{arccot}\,x+x]+C 10.xarccotxdx=21[(1+x2)arccotx+x]+C

#############################################################

十四.含有 e x e^x ex的形式

1. ∫ a x d x = a x ln ⁡ a + C 1.\int a^xdx=\frac{a^x}{\ln{a}}+C 1.axdx=lnaax+C

2. ∫ e x d x = e x + C 2.\int e^xdx=e^x+C 2.exdx=ex+C

3. ∫ x e x d x = ( x − 1 ) e x + C 3.\int xe^xdx=(x-1)e^x+C 3.xexdx=(x1)ex+C

4. ∫ x n e x d x = x n e x − n ∫ x n − 1 e x d x + C 4.\int x^ne^xdx=x^ne^x-n\int x^{n-1}e^xdx+C 4.xnexdx=xnexnxn1exdx+C

5. ∫ d x 1 + e x = x − ln ⁡ ( 1 + e x ) + C 5.\int\frac{dx}{1+e^x}=x-\ln{(1+e^x)}+C 5.1+exdx=xln(1+ex)+C

6. ∫ e a x sin ⁡ b x d x = e a x a 2 + b 2 ( a sin ⁡ b x − b cos ⁡ b x ) + C 6.\int e^{ax}\sin{bx}dx=\frac{e^{ax}}{a^2+b^2}(a\sin{bx}-b\cos{bx})+C 6.eaxsinbxdx=a2+b2eax(asinbxbcosbx)+C

7. ∫ e a x cos ⁡ b x d x = e a x a 2 + b 2 ( a cos ⁡ b x + b sin ⁡ b x ) + C 7.\int e^{ax}\cos{bx}dx=\frac{e^{ax}}{a^2+b^2}(a\cos{bx}+b\sin{bx})+C 7.eaxcosbxdx=a2+b2eax(acosbx+bsinbx)+C

#############################################################

十五.含有 l n   x ln\,x lnx的形式

1. ∫ ln ⁡ x d x = x ( ln ⁡ x − 1 ) + C 1.\int\ln{x}dx=x(\ln{x}-1)+C 1.lnxdx=x(lnx1)+C

2. ∫ ln ⁡ x x d x = 4 x ( ln ⁡ x − 1 ) + C 2.\int\frac{\ln{x}}{\sqrt{x}}dx=4\sqrt{x}(\ln{\sqrt{x}-1})+C 2.x lnxdx=4x (lnx 1)+C

3. ∫ x ln ⁡ x d x = x 2 4 ( 2 ln ⁡ x − 1 ) + C 3.\int x\ln{x}dx=\frac{x^2}{4}(2\ln{x}-1)+C 3.xlnxdx=4x2(2lnx1)+C

4. ∫ x n ln ⁡ x d x = x n + 1 ( n + 1 ) 2 [ ( n + 1 ) ln ⁡ x − 1 ] + C   ( n ≠ − 1 ) 4.\int x^n\ln{x}dx=\frac{x^{n+1}}{(n+1)^2}[(n+1)\ln{x}-1]+C\,(n≠-1) 4.xnlnxdx=(n+1)2xn+1[(n+1)lnx1]+C(n=1)

5. ∫ ( ln ⁡ x ) 2 d x = x [ ( ln ⁡ x ) 2 − 2 ln ⁡ x + 2 ] + C 5.\int(\ln{x})^2dx=x[(\ln{x})^2-2\ln{x}+2]+C 5.(lnx)2dx=x[(lnx)22lnx+2]+C

6. ∫ ( ln ⁡ x ) n d x = x ( ln ⁡ x ) n − n ∫ ( ln ⁡ x ) n − 1 d x 6.\int(\ln{x})^ndx=x(\ln{x})^n-n\int(\ln{x})^{n-1}dx 6.(lnx)ndx=x(lnx)nn(lnx)n1dx

7. ∫ sin ⁡ ( ln ⁡ x ) d x = x 2 [ sin ⁡ ( ln ⁡ x ) − cos ⁡ ( ln ⁡ x ) ] + C 7.\int\sin{(\ln{x})}dx=\frac{x}{2}[\sin{(\ln{x})}-\cos{(\ln{x})}]+C 7.sin(lnx)dx=2x[sin(lnx)cos(lnx)]+C

8. ∫ cos ⁡ ( ln ⁡ x ) d x = x 2 [ sin ⁡ ( ln ⁡ x ) + cos ⁡ ( ln ⁡ x ) ] + C 8.\int\cos{(\ln{x})}dx=\frac{x}{2}[\sin{(\ln{x})}+\cos{(\ln{x})}]+C 8.cos(lnx)dx=2x[sin(lnx)+cos(lnx)]+C

9. ∫ ln ⁡ ( x + 1 + x 2 ) d x = x ln ⁡ ( x + 1 + x 2 ) − 1 + x 2 + C 9.\int\ln{(x+\sqrt{1+x^2})}dx=x\ln{(x+\sqrt{1+x^2})}-\sqrt{1+x^2}+C 9.ln(x+1+x2 )dx=xln(x+1+x2 )1+x2 +C

#############################################################

十六.含有双曲函数的形式

#############################################################

十七.常用积分公式

1.狄利克雷积分:

∫ 0 + ∞ sin ⁡ x x d x = π 2 \int_0^{+\infty}\frac{\sin{x}}{x}dx=\frac{\pi}{2} 0+xsinxdx=2π

推广:

∫ 0 + ∞ e − a x sin ⁡ b x x d x = arctan ⁡ b a \int_0^{+\infty}e^{-ax}\frac{\sin{bx}}{x}dx=\arctan{\frac{b}{a}} 0+eaxxsinbxdx=arctanab

2.拉普拉斯积分:

∫ 0 + ∞ cos ⁡ b x a 2 + x 2 d x = π 2 a e − a b   ( a , b > 0 ) \int_0^{+\infty}\frac{\cos{bx}}{a^2+x^2}dx=\frac{\pi}{2a}e^{-ab}\,(a,b>0) 0+a2+x2cosbxdx=2aπeab(a,b>0)

∫ 0 + ∞ x sin ⁡ b x a 2 + x 2 d x = π 2 e − a b   ( a , b > 0 ) \int_0^{+\infty}\frac{x\sin{bx}}{a^2+x^2}dx=\frac{\pi}{2}e^{-ab}\,(a,b>0) 0+a2+x2xsinbxdx=2πeab(a,b>0)

类似的积分:

∫ − ∞ + ∞ cos ⁡ x x 2 + p x + q d x = 2 π 4 q − p 2 e − 4 q − p 2 2 cos ⁡ p 2   ( 4 q > p 2 ) \int_{-\infty}^{+\infty}\frac{\cos{x}}{x^2+px+q}dx=\frac{2\pi}{\sqrt{4q-p^2}}e^{-\frac{\sqrt{4q-p^2}}{2}}\cos{\frac{p}{2}}\,(4q>p^2) +x2+px+qcosxdx=4qp2 2πe24qp2 cos2p(4q>p2)

∫ − ∞ + ∞ sin ⁡ x x 2 + p x + q d x = − 2 π 4 q − p 2 e − 4 q − p 2 2 sin ⁡ p 2   ( 4 q > p 2 ) \int_{-\infty}^{+\infty}\frac{\sin{x}}{x^2+px+q}dx=-\frac{2\pi}{\sqrt{4q-p^2}}e^{-\frac{\sqrt{4q-p^2}}{2}}\sin{\frac{p}{2}}\,(4q>p^2) +x2+px+qsinxdx=4qp2 2πe24qp2 sin2p(4q>p2)

3.菲涅尔积分:

∫ 0 + ∞ sin ⁡ x 2 d x = ∫ 0 + ∞ cos ⁡ x 2 d x = 1 2 π 2 \int_0^{+\infty}\sin{x^2}dx=\int_0^{+\infty}\cos{x^2}dx=\frac{1}{2}\sqrt{\frac{\pi}{2}} 0+sinx2dx=0+cosx2dx=212π

推广:

∫ 0 + ∞ sin ⁡ x k d x = 1 k Γ ( 1 k ) sin ⁡ π 2 k \int_0^{+\infty}\sin{x^k}dx=\frac{1}{k}Γ(\frac{1}{k})\sin{\frac{\pi}{2k}} 0+sinxkdx=k1Γ(k1)sin2kπ

∫ 0 + ∞ cos ⁡ x k d x = 1 k Γ ( 1 k ) cos ⁡ π 2 k \int_0^{+\infty}\cos{x^k}dx=\frac{1}{k}Γ(\frac{1}{k})\cos{\frac{\pi}{2k}} 0+cosxkdx=k1Γ(k1)cos2kπ

4.泊松积分:

∫ 0 + ∞ e − a x 2 cos ⁡ b x d x = 1 2 π a e − b 2 4 a   ( a > 0 ) \int_0^{+\infty}e^{-ax^2}\cos{bx}dx=\frac{1}{2}\sqrt{\frac{\pi}{a}}e^{-\frac{b^2}{4a}}\,(a>0) 0+eax2cosbxdx=21aπ e4ab2(a>0)

b = 0 , a = 1 b=0,a=1 b=0,a=1时便是欧拉-泊松积分:

∫ 0 + ∞ e − x 2 d x = π 2 \int_0^{+\infty}e^{-x^2}dx=\frac{\sqrt{\pi}}{2} 0+ex2dx=2π

5.欧拉积分:

∫ 0 + ∞ x a − 1 1 + x d x = π sin ⁡ a π   ( 0 < a < 1 ) \int_0^{+\infty}\frac{x^{a-1}}{1+x}dx=\frac{\pi}{\sin{a\pi}}\,(0<a<1) 0+1+xxa1dx=sinaππ(0<a<1)

推论:

∫ 0 + ∞ d x a n + x n = a π n a n sin ⁡ π n   ( a > 0 , n > 1 ) \int_0^{+\infty}\frac{dx}{a^n+x^n}=\frac{a\pi}{na^n\sin{\frac{\pi}{n}}}\,(a>0,n>1) 0+an+xndx=nansinnπaπ(a>0,n>1)

类似的积分:

P . V . ∫ 0 + ∞ x a − 1 1 − x d x = π tan ⁡ a π ( P . V . P.V.\int_0^{+\infty}\frac{x^{a-1}}{1-x}dx=\frac{\pi}{\tan{a\pi}}(P.V. P.V.0+1xxa1dx=tanaππ(P.V.的含义是柯西主值 ) ) )

6.艾哈迈德积分:

∫ 0 1 arctan ⁡ x 2 + 2 ( x 2 + 1 ) x 2 + 2 d x = 5 π 2 96 \int_0^1\frac{\arctan{\sqrt{x^2+2}}}{(x^2+1)\sqrt{x^2+2}}dx=\frac{5\pi^2}{96} 01(x2+1)x2+2 arctanx2+2 dx=965π2

7.考克斯特积分:

∫ 0 π 2 arccos ⁡ cos ⁡ x 1 + 2 cos ⁡ x d x = 5 π 2 24 \int_0^{\frac{\pi}{2}}\arccos{\frac{\cos{x}}{1+2\cos{x}}}dx=\frac{5\pi^2}{24} 02πarccos1+2cosxcosxdx=245π2

8.伏汝兰尼积分:

∫ 0 + ∞ f ( a x ) − f ( b x ) x d x = [ f ( + ∞ ) − f ( 0 ) ] ln ⁡ a b \int_0^{+\infty}\frac{f(ax)-f(bx)}{x}dx=[f(+\infty)-f(0)]\ln{\frac{a}{b}} 0+xf(ax)f(bx)dx=[f(+)f(0)]lnba

lim ⁡ x → + ∞ f ( x ) \displaystyle\lim_{x\to+\infty}{f(x)} x+limf(x)不存在,则

∫ 0 + ∞ f ( a x ) − f ( b x ) x d x = − f ( 0 ) ln ⁡ a b \int_0^{+\infty}\frac{f(ax)-f(bx)}{x}dx=-f(0)\ln{\frac{a}{b}} 0+xf(ax)f(bx)dx=f(0)lnba

lim ⁡ x → 0 f ( x ) \displaystyle\lim_{x\to0}{f(x)} x0limf(x)不存在,则

∫ 0 + ∞ f ( a x ) − f ( b x ) x d x = f ( + ∞ ) ln ⁡ a b \int_0^{+\infty}\frac{f(ax)-f(bx)}{x}dx=f(+\infty)\ln{\frac{a}{b}} 0+xf(ax)f(bx)dx=f(+)lnba

9. Γ ( s ) Γ(s) Γ(s) ζ ( s ) , η ( s ) , β ( s ) ζ(s),η(s),β(s) ζ(s),η(s),β(s)的乘积的积分表达式:

∫ 0 + ∞ x s − 1 e x − 1 d x = Γ ( s ) ζ ( s ) \int_0^{+\infty}\frac{x^{s-1}}{e^x-1}dx=Γ(s)ζ(s) 0+ex1xs1dx=Γ(s)ζ(s)

∫ 0 + ∞ x s − 1 e x + 1 d x = Γ ( s ) η ( s ) \int_0^{+\infty}\frac{x^{s-1}}{e^x+1}dx=Γ(s)η(s) 0+ex+1xs1dx=Γ(s)η(s)

∫ 0 + ∞ x s − 1 e x + e − x d x = Γ ( s ) β ( s ) \int_0^{+\infty}\frac{x^{s-1}}{e^x+e^{-x}}dx=Γ(s)β(s) 0+ex+exxs1dx=Γ(s)β(s)

其中:

Γ ( s ) = ∫ 0 + ∞ t s − 1 e − t d t Γ(s)=\int_0^{+\infty}t^{s-1}e^{-t}dt Γ(s)=0+ts1etdt

ζ ( s ) = ∑ n = 1 ∞ 1 n s ζ(s)=\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^s} ζ(s)=n=1ns1

η ( s ) = ∑ n = 1 ∞ ( − 1 ) n + 1 n s η(s)=\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^s} η(s)=n=1ns(1)n+1

β ( s ) = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) s β(s)=\displaystyle\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)^s} β(s)=n=0(2n+1)s(1)n

10.拉阿伯积分公式:

R ( a ) = ∫ a a + 1 ln ⁡ Γ ( x ) d x = a ( ln ⁡ a − 1 ) + ln ⁡ 2 π R(a)=\int_a^{a+1}\ln{Γ(x)}dx=a(\ln{a}-1)+\ln{\sqrt{2\pi}} R(a)=aa+1lnΓ(x)dx=a(lna1)+ln2π

11.XXXX:

∫ − ∞ + ∞ f ( x − a x ) d x = ∫ − ∞ + ∞ f ( x ) d x   ( a > 0 ) \int_{-\infty}^{+\infty}f(x-\frac{a}{x})dx=\int_{-\infty}^{+\infty}f(x)dx\,(a>0) +f(xxa)dx=+f(x)dx(a>0)

12.罗巴切夫斯基积分法:

∫ 0 + ∞ f ( x ) sin ⁡ 2 x x d x = ∫ 0 π 2 f ( x ) d x   ( 0 ≤ x < + ∞ , f ( π + x ) = f ( π − x ) = f ( x ) ) \int_0^{+\infty}f(x)\frac{\sin^2{x}}{x}dx=\int_0^{\frac{\pi}{2}}f(x)dx\,(0≤x<+\infty,f(\pi+x)=f(\pi-x)=f(x)) 0+f(x)xsin2xdx=02πf(x)dx(0x<+,f(π+x)=f(πx)=f(x))

f ( x ) = 1 f(x)=1 f(x)=1时便是狄利克雷积分:

∫ 0 + ∞ sin ⁡ x x d x = π 2 \int_0^{+\infty}\frac{\sin{x}}{x}dx=\frac{\pi}{2} 0+xsinxdx=2π

类似的积分:

∫ 0 + ∞ f ( x ) sin ⁡ 2 x x 2 d x = ∫ 0 π 2 f ( x ) d x   ( 0 ≤ x < + ∞ , f ( π + x ) = f ( π − x ) = f ( x ) ) \int_0^{+\infty}f(x)\frac{\sin^2{x}}{x^2}dx=\int_0^{\frac{\pi}{2}}f(x)dx\,(0≤x<+\infty,f(\pi+x)=f(\pi-x)=f(x)) 0+f(x)x2sin2xdx=02πf(x)dx(0x<+,f(π+x)=f(πx)=f(x))

13.三角函数递推公式:

① I n = ∫ sin ⁡ n x d x ①I_n=\int\sin^n{x}dx In=sinnxdx
I n = − sin ⁡ n − 1 x cos ⁡ x n + n − 1 n I n − 2 \quad I_n=-\frac{\sin^{n-1}{x}\cos{x}}{n}+\frac{n-1}{n}I_{n-2} In=nsinn1xcosx+nn1In2

② I n = ∫ cos ⁡ n x d x ②I_n=\int\cos^n{x}dx In=cosnxdx
I n = sin ⁡ x cos ⁡ n − 1 x n + n − 1 n I n − 2 \quad I_n=\frac{\sin{x}\cos^{n-1}{x}}{n}+\frac{n-1}{n}I_{n-2} In=nsinxcosn1x+nn1In2

③ ∫ 0 π 2 sin ⁡ n θ d θ = ∫ 0 π 2 cos ⁡ n θ d θ = π Γ ( n + 1 2 ) 2 Γ ( n + 2 2 ) ③\int_0^{\frac{\pi}{2}}\sin^n{θ}dθ=\int_0^{\frac{\pi}{2}}\cos^n{θ}dθ=\frac{\sqrt{\pi}Γ(\frac{n+1}{2})}{2Γ(\frac{n+2}{2})} 02πsinnθdθ=02πcosnθdθ=2Γ(2n+2)π Γ(2n+1)

④ I n = ∫ tan ⁡ n x d x ④I_n=\int\tan^n{x}dx In=tannxdx
I n = tan ⁡ n − 1 x n − 1 − I n − 2 \quad I_n=\frac{\tan^{n-1}{x}}{n-1}-I_{n-2} In=n1tann1xIn2

⑤ I n = ∫ cot ⁡ n x d x ⑤I_n=\int\cot^n{x}dx In=cotnxdx
I n = − cot ⁡ n − 1 x n − 1 − I n − 2 \quad I_n=-\frac{\cot^{n-1}{x}}{n-1}-I_{n-2} In=n1cotn1xIn2

⑥ I n = ∫ sec ⁡ n x d x ⑥I_n=\int\sec^n{x}dx In=secnxdx
I n = sec ⁡ n − 2 x tan ⁡ x n − 1 + n − 2 n − 1 I n − 2 \quad I_n=\frac{\sec^{n-2}{x}\tan{x}}{n-1}+\frac{n-2}{n-1}I_{n-2} In=n1secn2xtanx+n1n2In2

⑦ I n = ∫ csc ⁡ n x d x ⑦I_n=\int\csc^n{x}dx In=cscnxdx
I n = − csc ⁡ n − 2 x cot ⁡ x n − 1 + n − 2 n − 1 I n − 2 \quad I_n=-\frac{\csc^{n-2}{x}\cot{x}}{n-1}+\frac{n-2}{n-1}I_{n-2} In=n1cscn2xcotx+n1n2In2

14. B ( p , q ) B(p,q) B(p,q)的积分表达式:

∫ 0 π 2 sin ⁡ p x cos ⁡ q x d x = 1 2 B ( p + 1 2 , q + 1 2 ) \int_0^{\frac{\pi}{2}}\sin^p{x}\cos^q{x}dx=\frac{1}{2}B(\frac{p+1}{2},\frac{q+1}{2}) 02πsinpxcosqxdx=21B(2p+1,2q+1)

其中 B ( p , q ) = ∫ 0 1 x p − 1 ( 1 − x ) q − 1 d x   ( p , q > 0 ) B(p,q)=\int_0^1x^{p-1}(1-x)^{q-1}dx\,(p,q>0) B(p,q)=01xp1(1x)q1dx(p,q>0)

  • 4
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值