一.含有 x n x^n xn的形式
1. ∫ x n d x = x n + 1 n + 1 + C ( n ≠ − 1 ) 1.\int x^ndx=\frac{x^{n+1}}{n+1}+C\,(n≠-1) 1.∫xndx=n+1xn+1+C(n=−1)
2. ∫ d x x = l n ∣ x ∣ + C 2.\int\frac{dx}{x}=ln\,|x|+C 2.∫xdx=ln∣x∣+C
#############################################################
二.含有 a x + b ax+b ax+b的形式
1. ∫ d x a x + b = 1 a ln ∣ a x + b ∣ + C 1.\int{\frac{dx}{ax+b}}=\frac{1}{a}\ln{\mid ax+b \mid}+C 1.∫ax+bdx=a1ln∣ax+b∣+C
2. ∫ ( a x + b ) n d x = 1 a ( n + 1 ) ( a x + b ) n + 1 + C ( n ≠ − 1 ) 2.\int{(ax+b)^ndx}=\frac{1}{a(n+1)}(ax+b)^{n+1}+C(n\neq-1) 2.∫(ax+b)ndx=a(n+1)1(ax+b)n+1+C(n=−1)
3. ∫ x a x + b d x = 1 a 2 ( a x − b ln ∣ a x + b ∣ ) + C 3.\int{\frac{x}{ax+b}dx}=\frac{1}{a^2}(ax-b\ln{\mid ax+b \mid})+C 3.∫ax+bxdx=a21(ax−bln∣ax+b∣)+C
4. ∫ x 2 a x + b d x = 1 a 3 [ 1 2 ( a x + b ) 2 − 2 b ( a x + b ) + b 2 ln ∣ a x + b ∣ ] + C 4.\int{\frac{x^2}{ax+b}dx}=\frac{1}{a^3}[\frac{1}{2}(ax+b)^2-2b(ax+b)+b^2\ln{\mid ax+b \mid}]+C 4.∫ax+bx2dx=a31[21(ax+b)2−2b(ax+b)+b2ln∣ax+b∣]+C
5. ∫ d x x ( a x + b ) = − 1 b ln ∣ a x + b x ∣ + C 5.\int{\frac{dx}{x(ax+b)}}=-\frac{1}{b}\ln{\mid \frac{ax+b}{x} \mid}+C 5.∫x(ax+b)dx=−b1ln∣xax+b∣+C
6. ∫ d x x 2 ( a x + b ) = − 1 b x + a b 2 ln ∣ a x + b x ∣ + C 6.\int{\frac{dx}{x^2(ax+b)}}=-\frac{1}{bx}+\frac{a}{b^2}\ln{\mid \frac{ax+b}{x} \mid}+C 6.∫x2(ax+b)dx=−bx1+b2aln∣xax+b∣+C
7. ∫ x ( a x + b ) 2 d x = 1 a 2 ( ln ∣ a x + b ∣ + b a x + b ) + C 7.\int{\frac{x}{(ax+b)^2}dx}=\frac{1}{a^2}(\ln{\mid ax+b \mid}+\frac{b}{ax+b})+C 7.∫(ax+b)2xdx=a21(ln∣ax+b∣+ax+bb)+C
8. ∫ x 2 ( a x + b ) 2 d x = 1 a 3 ( a x + b − 2 b ln ∣ a x + b ∣ − b 2 a x + b ) + C 8.\int{\frac{x^2}{(ax+b)^2}dx}=\frac{1}{a^3}(ax+b-2b\ln{\mid ax+b \mid-\frac{b^2}{ax+b}})+C 8.∫(ax+b)2x2dx=a31(ax+b−2bln∣ax+b∣−ax+bb2)+C
9. ∫ d x x ( a x + b ) 2 = 1 b ( a x + b ) − 1 b 2 ln ∣ a x + b x ∣ + C 9.\int{\frac{dx}{x(ax+b)^2}}=\frac{1}{b(ax+b)}-\frac{1}{b^2}\ln{\mid \frac{ax+b}{x} \mid}+C 9.∫x(ax+b)2dx=b(ax+b)1−b21ln∣xax+b∣+C
10. ∫ d x x 2 ( a x + b ) 2 = − 1 b 2 [ 2 a x + b x ( a x + b ) + 2 a b ln ∣ x a x + b ∣ ] + C 10.\int\frac{dx}{x^2(ax+b)^2}=-\frac{1}{b^2}[\frac{2ax+b}{x(ax+b)}+\frac{2a}{b}\ln|\frac{x}{ax+b}|]+C 10.∫x2(ax+b)2dx=−b21[x(ax+b)2ax+b+b2aln∣ax+bx∣]+C
11. ∫ x 2 ( a x + b ) 3 d x = 1 a 3 [ 2 b a x + b − b 2 2 ( a x + b ) 2 + ln ∣ a x + b ∣ ] + C 11.\int\frac{x^2}{(ax+b)^3}dx=\frac{1}{a^3}[\frac{2b}{ax+b}-\frac{b^2}{2(ax+b)^2}+\ln|ax+b|]+C 11.∫(ax+b)3x2dx=a31[ax+b2b−2(ax+b)2b2+ln∣ax+b∣]+C
12. ∫ x ( a x + b ) n d x = 1 a 2 [ − 1 ( n − 2 ) ( a x + b ) n − 2 + b ( n − 1 ) ( a x + b ) n − 1 ] + C ( n ≠ 1 , 2 ) 12.\int\frac{x}{(ax+b)^n}dx=\frac{1}{a^2}[-\frac{1}{(n-2)(ax+b)^{n-2}}+\frac{b}{(n-1)(ax+b)^{n-1}}]+C\,(n≠1,2) 12.∫(ax+b)nxdx=a21[−(n−2)(ax+b)n−21+(n−1)(ax+b)n−1b]+C(n=1,2)
13. ∫ x 2 ( a x + b ) n d x = 1 a 3 [ − 1 ( n − 3 ) ( a x + b ) n − 3 + 2 b ( n − 2 ) ( a x + b ) n − 2 − b 2 ( n − 1 ) ( a x + b ) n − 1 ] + C ( n ≠ 1 , 2 , 3 ) 13.\int\frac{x^2}{(ax+b)^n}dx=\frac{1}{a^3}[-\frac{1}{(n-3)(ax+b)^{n-3}}+\frac{2b}{(n-2)(ax+b)^{n-2}}-\frac{b^2}{(n-1)(ax+b)^{n-1}}]+C\,(n≠1,2,3) 13.∫(ax+b)nx2dx=a31[−(n−3)(ax+b)n−31+(n−2)(ax+b)n−22b−(n−1)(ax+b)n−1b2]+C(n=1,2,3)
#############################################################
三.含有 a x 2 + b ( a > 0 ) ax^2+b\,(a>0) ax2+b(a>0)的形式
1. ∫ d x a x 2 + b d x = { 1 a b arctan a b x + C ( b > 0 ) 1 2 − a b ln ∣ x − a x + a ∣ + C ( b < 0 ) 1.\int{\frac{dx}{ax^2+b}dx}=\begin{cases}\frac{1}{\sqrt{ab}}\arctan{\sqrt{\frac{a}{b}}x}+C(b>0)\\\frac{1}{2{\sqrt{-ab}}}\ln{\mid\frac{x-a}{x+a} \mid}+C(b<0) \end{cases} 1.∫ax2+bdxdx={ab1arctanbax+C(b>0)2−ab1ln∣x+ax−a∣+C(b<0)
2. ∫ x a x 2 + b d x = 1 2 a ln ∣ a x 2 + b ∣ + C 2.\int\frac{x}{ax^2+b}dx=\frac{1}{2a}\ln|ax^2+b|+C 2.∫ax2+bxdx=2a1ln∣ax2+b∣+C
3. ∫ x 2 a x 2 + b d x = x a − b a ∫ d x a x 2 + b 3.\int\frac{x^2}{ax^2+b}dx=\frac{x}{a}-\frac{b}{a}\int\frac{dx}{ax^2+b} 3.∫ax2+bx2dx=ax−ab∫ax2+bdx
4. ∫ d x x ( a x 2 + b ) = 1 2 b ln x 2 ∣ a x 2 + b ∣ + C 4.\int\frac{dx}{x(ax^2+b)}=\frac{1}{2b}\ln\frac{x^2}{|ax^2+b|}+C 4.∫x(ax2+b)dx=2b1ln∣ax2+b∣x2+C
5. ∫ d x x 2 ( a x 2 + b ) = − 1 b x − a b ∫ d x a x 2 + b 5.\int\frac{dx}{x^2(ax^2+b)}=-\frac{1}{bx}-\frac{a}{b}\int\frac{dx}{ax^2+b} 5.∫x2(ax2+b)dx=−bx1−ba∫ax2+bdx
6. ∫ d x x 3 ( a x 2 + b ) = a 2 b 2 ln ∣ a x 2 + b ∣ x 2 − 1 2 b x 2 + C 6.\int\frac{dx}{x^3(ax^2+b)}=\frac{a}{2b^2}\ln\frac{|ax^2+b|}{x^2}-\frac{1}{2bx^2}+C 6.∫x3(ax2+b)dx=2b2alnx2∣ax2+b∣−2bx21+C
7. ∫ d x ( a x 2 + b ) 2 = x 2 b ( a x 2 + b ) + 1 2 b ∫ d x a x 2 + b 7.\int\frac{dx}{(ax^2+b)^2}=\frac{x}{2b(ax^2+b)}+\frac{1}{2b}\int\frac{dx}{ax^2+b} 7.∫(ax2+b)2dx=2b(ax2+b)x+2b1∫ax2+bdx
#############################################################
四.含有
±
x
2
±
a
2
(
a
>
0
)
±x^2±a^2\,(a>0)
±x2±a2(a>0)的形式
1.
∫
d
x
x
2
+
a
2
=
1
a
arctan
x
a
+
C
1.\int{\frac{dx}{x^2+a^2}}=\frac{1}{a}\arctan{\frac{x}{a}}+C
1.∫x2+a2dx=a1arctanax+C
2. ∫ d x ( a 2 ± x 2 ) n = 1 2 a 2 ( n − 1 ) [ x ( a 2 ± x 2 ) n − 1 + ( 2 n − 3 ) ∫ d x ( a 2 ± x 2 ) n − 1 ] ( n ≠ 1 ) 2.\int{\frac{dx}{(a^2±x^2)^n}}=\frac{1}{2a^2(n-1)}[\frac{x}{(a^2±x^2)^{n-1}}+(2n-3)\int{\frac{dx}{(a^2±x^2)^{n-1}}}]\,(n≠1) 2.∫(a2±x2)ndx=2a2(n−1)1[(a2±x2)n−1x+(2n−3)∫(a2±x2)n−1dx](n=1)
3. ∫ d x x 2 − a 2 = 1 2 a ln ∣ x − a x + a ∣ + C 3.\int{\frac{dx}{x^2-a^2}}=\frac{1}{2a}\ln{\mid \frac{x-a}{x+a} \mid}+C 3.∫x2−a2dx=2a1ln∣x+ax−a∣+C
#############################################################
五.含有
a
x
2
+
b
x
+
c
ax^2+bx+c
ax2+bx+c的形式
1.
∫
d
x
a
x
2
+
b
x
+
c
=
{
2
4
a
c
−
b
2
a
r
c
t
a
n
2
a
x
+
b
4
a
c
−
b
2
+
C
(
b
2
<
4
a
c
)
1
b
2
−
4
a
c
l
n
∣
2
a
x
+
b
−
b
2
−
4
a
c
2
a
x
+
b
+
b
2
−
4
a
c
∣
+
C
(
b
2
>
4
a
c
)
1.\int \frac{dx}{ax^2+bx+c}=\begin{cases}\frac{2}{\sqrt{4ac-b^2}}arctan\frac{2ax+b}{\sqrt{4ac-b^2}}+C\,(b^2<4ac)\\ \frac{1}{b^2-4ac}ln|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}|+C\,(b^2>4ac)\end{cases}
1.∫ax2+bx+cdx={4ac−b22arctan4ac−b22ax+b+C(b2<4ac)b2−4ac1ln∣2ax+b+b2−4ac2ax+b−b2−4ac∣+C(b2>4ac)
2. ∫ x a x 2 + b x + c d x = 1 2 a l n ∣ a x 2 + b x + c ∣ − b 2 a ∫ d x a x 2 + b x + c 2.\int \frac{x}{ax^2+bx+c}dx=\frac{1}{2a}ln|ax^2+bx+c|-\frac{b}{2a}\int \frac{dx}{ax^2+bx+c} 2.∫ax2+bx+cxdx=2a1ln∣ax2+bx+c∣−2ab∫ax2+bx+cdx
#############################################################
六.含有 a x + b \sqrt{ax+b} ax+b的形式
1. ∫ a x + b d x 1.\int{\sqrt{ax+b}dx} 1.∫ax+bdx = 2 3 a ( a x + b ) 3 + C \frac{2}{3a}\sqrt{(ax+b)^3}+C 3a2(ax+b)3+C
2. ∫ x a x + b d x 2.\int{x\sqrt{ax+b}dx} 2.∫xax+bdx = 2 15 a 2 ( 3 a x − 2 b ) ( a x + b ) 3 + C \frac{2}{15a^2}(3ax-2b)\sqrt{(ax+b)^3}+C 15a22(3ax−2b)(ax+b)3+C
3. ∫ x 2 a x + b d x 3.\int{x^2\sqrt{ax+b}dx} 3.∫x2ax+bdx = 2 15 a 2 ( 15 a 2 x 2 − 12 a b x + 8 b 2 ) ( a x + b ) 3 + C \frac{2}{15a^2}(15a^2x^2-12abx+8b^2)\sqrt{(ax+b)^3}+C 15a22(15a2x2−12abx+8b2)(ax+b)3+C
4. ∫ x n a x + b d x = 2 a ( 2 n + 3 ) [ x n ( a x + b ) 3 2 − n b ∫ x n − 1 a x + b d x ] 4.\int{x^n\sqrt{ax+b}}dx=\frac{2}{a(2n+3)}[x^n(ax+b)^{\frac{3}{2}}-nb\int x^{n-1}\sqrt{ax+b}dx] 4.∫xnax+bdx=a(2n+3)2[xn(ax+b)23−nb∫xn−1ax+bdx]
5. ∫ x a x + b d x = 2 3 a 2 ( a x − 2 b ) a x + b + C 5.\int{\frac{x}{\sqrt{ax+b}}dx}=\frac{2}{3a^2}(ax-2b)\sqrt{ax+b}+C 5.∫ax+bxdx=3a22(ax−2b)ax+b+C
6. ∫ x 2 a x + b d x = 2 15 a 3 ( 3 a 2 x 2 − 4 a b c x + 8 b 2 ) a x + b + C 6.\int{\frac{x^2}{\sqrt{ax+b}}dx}=\frac{2}{15a^3}(3a^2x^2-4abcx+8b^2)\sqrt{ax+b}+C 6.∫ax+bx2dx=15a32(3a2x2−4abcx+8b2)ax+b+C
7. ∫ x n a x + b d x = 2 ( 2 n + 1 ) a ( x n a x + b − n b ∫ x n − 1 a x + b d x ) 7.\int\frac{x^n}{\sqrt{ax+b}}dx=\frac{2}{(2n+1)a}(x^n\sqrt{ax+b}-nb\int\frac{x^{n-1}}{\sqrt{ax+b}}dx) 7.∫ax+bxndx=(2n+1)a2(xnax+b−nb∫ax+bxn−1dx)
8. ∫ d x x a x + b = { 1 b ln ∣ a x + b − b a x + b + b ∣ + C ( b > 0 ) 2 − b arctan a x + b − b + C ( b < 0 ) 8.\int{\frac{dx}{x\sqrt{ax+b}}}=\begin{cases} \frac{1}{\sqrt{b}}\ln{\mid \frac{\sqrt{ax+b}-\sqrt{b}}{\sqrt{ax+b}+\sqrt{b}} \mid}+C(b>0)\\\frac{2}{\sqrt{-b}}\arctan{\sqrt{\frac{ax+b}{-b}}}+C(b<0) \end{cases} 8.∫xax+bdx=⎩⎨⎧b1ln∣ax+b+bax+b−b∣+C(b>0)−b2arctan−bax+b+C(b<0)
9. ∫ d x x 2 a x + b d x = − a x + b b x − a 2 b ∫ d x x a x + b 9.\int{\frac{dx}{x^2\sqrt{ax+b}}dx}=-\frac{\sqrt{ax+b}}{bx}-\frac{a}{2b}\int{\frac{dx}{x\sqrt{ax+b}}} 9.∫x2ax+bdxdx=−bxax+b−2ba∫xax+bdx
10. ∫ d x x n a x + b = − 1 b ( n − 1 ) [ a x + b x n − 1 + a ( 2 n − 3 ) 2 ∫ d x x n − 1 a x + b ] ( n ≠ − 1 ) 10.\int\frac{dx}{x^n\sqrt{ax+b}}=-\frac{1}{b(n-1)}[\frac{\sqrt{ax+b}}{x^{n-1}}+\frac{a(2n-3)}{2}\int\frac{dx}{x^{n-1}\sqrt{ax+b}}]\,(n≠-1) 10.∫xnax+bdx=−b(n−1)1[xn−1ax+b+2a(2n−3)∫xn−1ax+bdx](n=−1)
11. ∫ a x + b x d x = 2 a x + b + b ∫ d x x a x + b 11.\int{\frac{\sqrt{ax+b}}{x}dx}=2\sqrt{ax+b}+b\int{\frac{dx}{x\sqrt{ax+b}}} 11.∫xax+bdx=2ax+b+b∫xax+bdx
12. ∫ a x + b x 2 d x = − a x + b x + a 2 ∫ d x x a x + b 12.\int{\frac{\sqrt{ax+b}}{x^2}dx}=-\frac{\sqrt{ax+b}}{x}+\frac{a}{2}\int{\frac{dx}{x\sqrt{ax+b}}} 12.∫x2ax+bdx=−xax+b+2a∫xax+bdx
13. ∫ a x + b x n d x = − 1 b ( n − 1 ) [ ( a x + b ) 3 2 x n − 1 + ( 2 n − 5 ) a 2 ∫ a x + b x n − 1 d x ] ( n ≠ − 1 ) 13.\int{\frac{\sqrt{ax+b}}{x^n}dx}=-\frac{1}{b(n-1)}[\frac{(ax+b)^{\frac{3}{2}}}{x^{n-1}}+\frac{(2n-5)a}{2}\int{\frac{\sqrt{ax+b}}{x^{n-1}}dx}]\,(n≠-1) 13.∫xnax+bdx=−b(n−1)1[xn−1(ax+b)23+2(2n−5)a∫xn−1ax+bdx](n=−1)
#############################################################
七.含有 ± a x 2 + b x + c ( a > 0 ) \sqrt{±ax^2+bx+c}\,(a>0) ±ax2+bx+c(a>0)的形式
1. ∫ d x a x 2 + b x + c = 1 a ln ∣ 2 a x + b + 2 a a x 2 + b x + c ∣ + C 1.\int\frac{dx}{\sqrt{ax^2+bx+c}}=\frac{1}{\sqrt{a}}\ln|2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}|+C 1.∫ax2+bx+cdx=a1ln∣2ax+b+2aax2+bx+c∣+C
2. ∫ a x 2 + b x + c d x = 2 a x + b 4 a a x 2 + b x + c + 4 a c − b 2 8 a 3 2 ln ∣ 2 a x + b + 2 a a x 2 + b x + c ∣ + C 2.\int\sqrt{ax^2+bx+c}dx=\frac{2ax+b}{4a}\sqrt{ax^2+bx+c}+\frac{4ac-b^2}{8a^{\frac{3}{2}}}\ln|2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}|+C 2.∫ax2+bx+cdx=4a2ax+bax2+bx+c+8a234ac−b2ln∣2ax+b+2aax2+bx+c∣+C
3. ∫ x a x 2 + b x + c d x = 1 a a x 2 + b x + c − b 2 a 3 2 ln ∣ 2 a x + b + 2 a a x 2 + b x + c ∣ + C 3.\int\frac{x}{\sqrt{ax^2+bx+c}}dx=\frac{1}{a}\sqrt{ax^2+bx+c}-\frac{b}{2a^{\frac{3}{2}}}\ln|2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}|+C 3.∫ax2+bx+cxdx=a1ax2+bx+c−2a23bln∣2ax+b+2aax2+bx+c∣+C
4. ∫ d x − a x 2 + b x + c = 1 a arcsin 2 a x − b b 2 + 4 a c + C 4.\int\frac{dx}{\sqrt{-ax^2+bx+c}}=\frac{1}{\sqrt{a}}\arcsin\frac{2ax-b}{\sqrt{b^2+4ac}}+C 4.∫−ax2+bx+cdx=a1arcsinb2+4ac2ax−b+C
5. ∫ − a x 2 + b x + c d x = 2 a x − b 4 a − a x 2 + b x + c + 4 a c + b 2 8 a 3 2 arcsin 2 a x − b b 2 + 4 a c + C 5.\int\sqrt{-ax^2+bx+c}dx=\frac{2ax-b}{4a}\sqrt{-ax^2+bx+c}+\frac{4ac+b^2}{8a^{\frac{3}{2}}}\arcsin\frac{2ax-b}{\sqrt{b^2+4ac}}+C 5.∫−ax2+bx+cdx=4a2ax−b−ax2+bx+c+8a234ac+b2arcsinb2+4ac2ax−b+C
6. ∫ x − a x 2 + b x + c d x = − 1 a − a x 2 + b x + c + b 2 a 3 2 arcsin 2 a x − b b 2 + 4 a c + C 6.\int\frac{x}{\sqrt{-ax^2+bx+c}}dx=-\frac{1}{a}\sqrt{-ax^2+bx+c}+\frac{b}{2a^{\frac{3}{2}}}\arcsin\frac{2ax-b}{\sqrt{b^2+4ac}}+C 6.∫−ax2+bx+cxdx=−a1−ax2+bx+c+2a23barcsinb2+4ac2ax−b+C
#############################################################
八.含有 x 2 ± a 2 ( a > 0 ) \sqrt{x^2±a^2}(a>0) x2±a2(a>0)的形式
1. ∫ x 2 ± a 2 d x = 1 2 ( x x 2 ± a 2 ± a 2 l n ∣ x + x 2 ± a 2 ∣ ) + C 1.\int\sqrt{x^2±a^2}dx=\frac{1}{2}(x\sqrt{x^2±a^2}±a^2ln\,|x+\sqrt{x^2±a^2}|)+C 1.∫x2±a2dx=21(xx2±a2±a2ln∣x+x2±a2∣)+C
2. ∫ ( x 2 + a 2 ) 3 2 = x 8 ( 2 x 2 + 5 a 2 ) x 2 + a 2 + 3 8 a 4 ln ( x + x 2 + a 2 ) + C 2.\int(x^2+a^2)^{\frac{3}{2}}=\frac{x}{8}(2x^2+5a^2)\sqrt{x^2+a^2}+\frac{3}{8}a^4\ln(x+\sqrt{x^2+a^2})+C 2.∫(x2+a2)23=8x(2x2+5a2)x2+a2+83a4ln(x+x2+a2)+C
3. ∫ ( x 2 − a 2 ) 3 2 = x 8 ( 2 x 2 − 5 a 2 ) x 2 − a 2 + 3 8 a 4 ln ∣ x + x 2 − a 2 ∣ + C 3.\int(x^2-a^2)^{\frac{3}{2}}=\frac{x}{8}(2x^2-5a^2)\sqrt{x^2-a^2}+\frac{3}{8}a^4\ln|x+\sqrt{x^2-a^2}|+C 3.∫(x2−a2)23=8x(2x2−5a2)x2−a2+83a4ln∣x+x2−a2∣+C
4. ∫ x x 2 ± a 2 d x = 1 3 ( x 2 ± a 2 ) 3 2 + C 4.\int x\sqrt{x^2±a^2}dx=\frac{1}{3}(x^2±a^2)^{\frac{3}{2}}+C 4.∫xx2±a2dx=31(x2±a2)23+C
5. ∫ x 2 x 2 ± a 2 d x = 1 8 [ x ( 2 x 2 ± a 2 ) x 2 ± a 2 − a 4 l n ∣ x + x 2 ± a 2 ∣ ] + C 5.\int x^2\sqrt{x^2±a^2}dx=\frac{1}{8}[x(2x^2±a^2)\sqrt{x^2±a^2}-a^4ln\,|x+\sqrt{x^2±a^2}|]+C 5.∫x2x2±a2dx=81[x(2x2±a2)x2±a2−a4ln∣x+x2±a2∣]+C
6. ∫ 1 x x 2 + a 2 d x = x 2 + a 2 − a l n ∣ a + x 2 + a 2 x ∣ + C 6.\int\frac{1}{x}\sqrt{x^2+a^2}dx=\sqrt{x^2+a^2}-aln\,|\frac{a+\sqrt{x^2+a^2}}{x}|+C 6.∫x1x2+a2dx=x2+a2−aln∣xa+x2+a2∣+C
7. ∫ 1 x x 2 − a 2 d x = x 2 − a 2 − a arccos a x + C 7.\int\frac{1}{x}\sqrt{x^2-a^2}dx=\sqrt{x^2-a^2}-a\arccos\frac{a}{x}+C 7.∫x1x2−a2dx=x2−a2−aarccosxa+C
8. ∫ 1 x 2 x 2 ± a 2 d x = − 1 x x 2 ± a 2 + l n ∣ x + x 2 ± a 2 ∣ + C 8.\int\frac{1}{x^2}\sqrt{x^2±a^2}dx=-\frac{1}{x}\sqrt{x^2±a^2}+ln\,|x+\sqrt{x^2±a^2}|+C 8.∫x21x2±a2dx=−x1x2±a2+ln∣x+x2±a2∣+C
9. ∫ d x x 2 + a 2 = a r s h x a + C = l n ∣ x + x 2 + a 2 ∣ + C 9.\int\frac{dx}{\sqrt{x^2+a^2}}=arsh\frac{x}{a}+C=ln\,|x+\sqrt{x^2+a^2}|+C 9.∫x2+a2dx=arshax+C=ln∣x+x2+a2∣+C
10. ∫ d x x 2 − a 2 = x ∣ x ∣ a r s h ∣ x ∣ a + C = l n ∣ x + x 2 − a 2 ∣ + C 10.\int\frac{dx}{\sqrt{x^2-a^2}}=\frac{x}{|x|}arsh\frac{|x|}{a}+C=ln\,|x+\sqrt{x^2-a^2}|+C 10.∫x2−a2dx=∣x∣xarsha∣x∣+C=ln∣x+x2−a2∣+C
11. ∫ x x 2 ± a 2 d x = x 2 ± a 2 + C 11.\int\frac{x}{\sqrt{x^2±a^2}}dx=\sqrt{x^2±a^2}+C 11.∫x2±a2xdx=x2±a2+C
12. ∫ x 2 x 2 ± a 2 d x = 1 2 ( x x 2 ± a 2 ∓ a 2 l n ∣ x + x 2 ± a 2 ∣ ) + C 12.\int\frac{x^2}{\sqrt{x^2±a^2}}dx=\frac{1}{2}(x\sqrt{x^2±a^2}∓a^2ln\,|x+\sqrt{x^2±a^2}|)+C 12.∫x2±a2x2dx=21(xx2±a2∓a2ln∣x+x2±a2∣)+C
13. ∫ d x x x 2 + a 2 = − 1 a l n ∣ a + x 2 + a 2 x ∣ + C 13.\int\frac{dx}{x\sqrt{x^2+a^2}}=-\frac{1}{a}ln\,|\frac{a+\sqrt{x^2+a^2}}{x}|+C 13.∫xx2+a2dx=−a1ln∣xa+x2+a2∣+C
14. ∫ d x x x 2 − a 2 = 1 a arccos a x + C 14.\int\frac{dx}{x\sqrt{x^2-a^2}}=\frac{1}{a}\arccos\frac{a}{x}+C 14.∫xx2−a2dx=a1arccosxa+C
15. ∫ d x x 2 x 2 ± a 2 = ∓ x 2 ± a 2 a 2 x + C 15.\int\frac{dx}{x^2\sqrt{x^2±a^2}}=∓\frac{\sqrt{x^2±a^2}}{a^2x}+C 15.∫x2x2±a2dx=∓a2xx2±a2+C
16. ∫ d x ( x 2 ± a 2 ) 3 2 = ± x a 2 x 2 ± a 2 + C 16.\int\frac{dx}{(x^2±a^2)^{\frac{3}{2}}}=\frac{±x}{a^2\sqrt{x^2±a^2}}+C 16.∫(x2±a2)23dx=a2x2±a2±x+C
17. ∫ x ( x 2 ± a 2 ) 3 2 d x = − 1 x 2 ± a 2 + C 17.\int\frac{x}{(x^2±a^2)^{\frac{3}{2}}}dx=-\frac{1}{\sqrt{x^2±a^2}}+C 17.∫(x2±a2)23xdx=−x2±a21+C
18. ∫ x 2 ( x 2 ± a 2 ) 3 2 d x = − x x 2 ± a 2 + ln ( x + x 2 ± a 2 ) + C 18.\int\frac{x^2}{(x^2±a^2)^{\frac{3}{2}}}dx=-\frac{x}{\sqrt{x^2±a^2}}+\ln(x+\sqrt{x^2±a^2})+C 18.∫(x2±a2)23x2dx=−x2±a2x+ln(x+x2±a2)+C
#############################################################
九.含有 a 2 − x 2 ( a > 0 ) \sqrt{a^2-x^2}(a>0) a2−x2(a>0)的形式*
1. ∫ a 2 − x 2 d x = 1 2 ( x a 2 − x 2 + a 2 arcsin x a ) + C 1.\int\sqrt{a^2-x^2}dx=\frac{1}{2}(x\sqrt{a^2-x^2}+a^2\arcsin\frac{x}{a})+C 1.∫a2−x2dx=21(xa2−x2+a2arcsinax)+C
2. ∫ ( a 2 − x 2 ) 3 2 d x = 5 8 ( 5 a 2 − 2 x 2 ) a 2 − x 2 + 3 8 a 4 arcsin x a + C 2.\int(a^2-x^2)^{\frac{3}{2}}dx=\frac{5}{8}(5a^2-2x^2)\sqrt{a^2-x^2}+\frac{3}{8}a^4\arcsin\frac{x}{a}+C 2.∫(a2−x2)23dx=85(5a2−2x2)a2−x2+83a4arcsinax+C
3. ∫ x a 2 − x 2 d x = − 1 3 ( a 2 − x 2 ) 3 2 + C 3.\int x\sqrt{a^2-x^2}dx=-\frac{1}{3}(a^2-x^2)^{\frac{3}{2}}+C 3.∫xa2−x2dx=−31(a2−x2)23+C
4. ∫ x 2 a 2 − x 2 d x = 1 8 [ x ( 2 x 2 − a 2 ) a 2 − x 2 + a 4 arcsin x a ] + C 4.\int x^2\sqrt{a^2-x^2}dx=\frac{1}{8}[x(2x^2-a^2)\sqrt{a^2-x^2}+a^4\arcsin\frac{x}{a}]+C 4.∫x2a2−x2dx=81[x(2x2−a2)a2−x2+a4arcsinax]+C
5. ∫ 1 x a 2 − x 2 d x = a 2 − x 2 − a ln ∣ a + a 2 − x 2 x ∣ + C 5.\int\frac{1}{x}\sqrt{a^2-x^2}dx=\sqrt{a^2-x^2}-a\ln|\frac{a+\sqrt{a^2-x^2}}{x}|+C 5.∫x1a2−x2dx=a2−x2−aln∣xa+a2−x2∣+C
6. ∫ 1 x 2 a 2 − x 2 d x = − 1 x a 2 − x 2 − arcsin x a + C 6.\int\frac{1}{x^2}\sqrt{a^2-x^2}dx=-\frac{1}{x}\sqrt{a^2-x^2}-\arcsin\frac{x}{a}+C 6.∫x21a2−x2dx=−x1a2−x2−arcsinax+C
7. ∫ d x a 2 − x 2 arcsin x a + C 7.\int\frac{dx}{\sqrt{a^2-x^2}}\arcsin\frac{x}{a}+C 7.∫a2−x2dxarcsinax+C
8. ∫ d x x a 2 − x 2 = − 1 a ln ∣ a + a 2 − x 2 x ∣ + C 8.\int\frac{dx}{x\sqrt{a^2-x^2}}=-\frac{1}{a}\ln|\frac{a+\sqrt{a^2-x^2}}{x}|+C 8.∫xa2−x2dx=−a1ln∣xa+a2−x2∣+C
9. ∫ d x x 2 a 2 − x 2 = − a 2 − x 2 a 2 x + C 9.\int\frac{dx}{x^2\sqrt{a^2-x^2}}=-\frac{\sqrt{a^2-x^2}}{a^2x}+C 9.∫x2a2−x2dx=−a2xa2−x2+C
10. ∫ x a 2 − x 2 d x = − a 2 − x 2 + C 10.\int\frac{x}{\sqrt{a^2-x^2}}dx=-\sqrt{a^2-x^2}+C 10.∫a2−x2xdx=−a2−x2+C
11. ∫ x 2 a 2 − x 2 d x = 1 2 ( − x a 2 − x 2 + a 2 arcsin x a ) + C 11.\int\frac{x^2}{\sqrt{a^2-x^2}}dx=\frac{1}{2}(-x\sqrt{a^2-x^2}+a^2\arcsin\frac{x}{a})+C 11.∫a2−x2x2dx=21(−xa2−x2+a2arcsinax)+C
12. ∫ d x ( a 2 − x 2 ) 3 2 = x a 2 a 2 − x 2 + C 12.\int\frac{dx}{(a^2-x^2)^{\frac{3}{2}}}=\frac{x}{a^2\sqrt{a^2-x^2}}+C 12.∫(a2−x2)23dx=a2a2−x2x+C
13. ∫ x ( a 2 − x 2 ) 3 2 d x = 1 a 2 − x 2 + C 13.\int\frac{x}{(a^2-x^2)^{\frac{3}{2}}}dx=\frac{1}{\sqrt{a^2-x^2}}+C 13.∫(a2−x2)23xdx=a2−x21+C
14. ∫ x 2 ( a 2 − x 2 ) 3 2 d x = x a 2 − x 2 − arcsin x a + C 14.\int\frac{x^2}{(a^2-x^2)^{\frac{3}{2}}}dx=\frac{x}{\sqrt{a^2-x^2}}-\arcsin\frac{x}{a}+C 14.∫(a2−x2)23x2dx=a2−x2x−arcsinax+C
#############################################################
十.含有 ± x − a x − b \sqrt{±\frac{x-a}{x-b}} ±x−bx−a或 ( x − a ) ( b − x ) \sqrt{(x-a)(b-x)} (x−a)(b−x)的形式
1. ∫ x − a x − b = ( x − b ) x − a x − b + ( b − a ) ln ( ∣ x − a ∣ + ∣ x − b ∣ ) + C 1.\int\sqrt{\frac{x-a}{x-b}}=(x-b)\sqrt{\frac{x-a}{x-b}}+(b-a)\ln(\sqrt{|x-a|}+\sqrt{|x-b|})+C 1.∫x−bx−a=(x−b)x−bx−a+(b−a)ln(∣x−a∣+∣x−b∣)+C
2. ∫ − x − a x − b = ( x − b ) − x − a x − b + ( b − a ) arcsin x − a b − a + C 2.\int\sqrt{-\frac{x-a}{x-b}}=(x-b)\sqrt{-\frac{x-a}{x-b}}+(b-a)\arcsin\sqrt{\frac{x-a}{b-a}}+C 2.∫−x−bx−a=(x−b)−x−bx−a+(b−a)arcsinb−ax−a+C
3. ∫ d x ( x − a ) ( b − x ) = 2 arcsin x − a b − a + C ( a < b ) 3.\int\frac{dx}{\sqrt{(x-a)(b-x)}}=2\arcsin\sqrt{\frac{x-a}{b-a}}+C\,(a<b) 3.∫(x−a)(b−x)dx=2arcsinb−ax−a+C(a<b)
4. ∫ ( x − a ) ( b − x ) d x = 2 x − a − b 4 ( x − a ) ( b − x ) + ( b − a ) 2 4 arcsin x − a b − a + C ( a < b ) 4.\int\sqrt{(x-a)(b-x)}dx=\frac{2x-a-b}{4}\sqrt{(x-a)(b-x)}+\frac{(b-a)^2}{4}\arcsin\sqrt{\frac{x-a}{b-a}}+C\,(a<b) 4.∫(x−a)(b−x)dx=42x−a−b(x−a)(b−x)+4(b−a)2arcsinb−ax−a+C(a<b)
#############################################################
十一.含有 s i n x , c o s x sin\,x,cos\,x sinx,cosx的形式
1. ∫ s i n x d x = − c o s x + C 1.\int sin\,x\,dx=-cos\,x+C 1.∫sinxdx=−cosx+C
2. ∫ c o s x d x = s i n x + C 2.\int cos\,x\,dx=sin\,x+C 2.∫cosxdx=sinx+C
3. ∫ s i n 2 x d x = x 2 − 1 4 s i n 2 x + C 3.\int sin^2x\,dx=\frac{x}{2}-\frac{1}{4}sin\,2x+C 3.∫sin2xdx=2x−41sin2x+C
4. ∫ c o s 2 x d x = x 2 + 1 4 s i n 2 x + C 4.\int cos^2x\,dx=\frac{x}{2}+\frac{1}{4}sin\,2x+C 4.∫cos2xdx=2x+41sin2x+C
5. ∫ s i n n x d x = − 1 n s i n n − 1 x c o s x + n − 1 n ∫ s i n n − 2 x d x 5.\int sin^nx\,dx=-\frac{1}{n}sin^{n-1}x\,cos\,x+\frac{n-1}{n}\int sin^{n-2}x\,dx 5.∫sinnxdx=−n1sinn−1xcosx+nn−1∫sinn−2xdx
6. ∫ c o s n x d x = 1 n c o s n − 1 x s i n x + n − 1 n ∫ c o s n − 2 x d x 6.\int cos^nx\,dx=\frac{1}{n}cos^{n-1}x\,sin\,x+\frac{n-1}{n}\int cos^{n-2}x\,dx 6.∫cosnxdx=n1cosn−1xsinx+nn−1∫cosn−2xdx
7. ∫ c o s m x s i n n x d x = 1 m + n c o s m − 1 x s i n n + 1 x + m − 1 m + n ∫ c o s m − 2 s i n n x d x = − 1 m + n c o s m + 1 x s i n n − 1 x + n − 1 m + n ∫ c o s m s i n n − 2 x d x 7.\int cos^mx\,sin^nx\,dx=\frac{1}{m+n}cos^{m-1}x\,sin^{n+1}x+\frac{m-1}{m+n}\int cos^{m-2}sin^nx\,dx\\\qquad\qquad\qquad\qquad\:\:\,=-\frac{1}{m+n}cos^{m+1}x\,sin^{n-1}x+\frac{n-1}{m+n}\int cos^msin^{n-2}x\,dx 7.∫cosmxsinnxdx=m+n1cosm−1xsinn+1x+m+nm−1∫cosm−2sinnxdx=−m+n1cosm+1xsinn−1x+m+nn−1∫cosmsinn−2xdx
8. ∫ sin a x cos b x d x = − 1 2 ( a + b ) cos ( a + b ) x − 1 2 ( a − b ) cos ( a − b ) x + C 8.\int \sin ax\cos bx\,dx=-\frac{1}{2(a+b)}\cos\,(a+b)x-\frac{1}{2(a-b)}\cos\,(a-b)x+C 8.∫sinaxcosbxdx=−2(a+b)1cos(a+b)x−2(a−b)1cos(a−b)x+C
9. ∫ sin a x sin b x d x = − 1 2 ( a + b ) sin ( a + b ) x + 1 2 ( a − b ) sin ( a − b ) x + C 9.\int\sin ax\sin bx\,dx=-\frac{1}{2(a+b)}\sin\,(a+b)x+\frac{1}{2(a-b)}\sin\,(a-b)x+C 9.∫sinaxsinbxdx=−2(a+b)1sin(a+b)x+2(a−b)1sin(a−b)x+C
10. ∫ cos a x cos b x d x = 1 2 ( a + b ) sin ( a + b ) x + 1 2 ( a − b ) sin ( a − b ) x + C 10.\int\cos ax\cos bx\,dx=\frac{1}{2(a+b)}\sin\,(a+b)x+\frac{1}{2(a-b)}\sin\,(a-b)x+C 10.∫cosaxcosbxdx=2(a+b)1sin(a+b)x+2(a−b)1sin(a−b)x+C
11. ∫ x sin x d x = sin x − x cos x + C 11.\int x\sin{x}dx=\sin{x}-x\cos{x}+C 11.∫xsinxdx=sinx−xcosx+C
12. ∫ x cos x d x = cos x + x sin x + C 12.\int x\cos{x}dx=\cos{x}+x\sin{x}+C 12.∫xcosxdx=cosx+xsinx+C
13. ∫ x n sin x d x = − x n cos x + n ∫ x n − 1 cos x d x 13.\int x^n\sin{x}dx=-x^n\cos{x}+n\int x^{n-1}\cos{x}dx 13.∫xnsinxdx=−xncosx+n∫xn−1cosxdx
14. ∫ x n cos x d x = x n sin x − n ∫ x n − 1 sin x d x 14.\int x^n\cos{x}dx=x^n\sin{x}-n\int x^{n-1}\sin{x}dx 14.∫xncosxdx=xnsinx−n∫xn−1sinxdx
15. ∫ d x s i n n x = − 1 n − 1 ⋅ c o s x s i n n − 1 x + n − 2 n − 1 ∫ d x s i n n − 2 x 15.\int\frac{dx}{sin^nx}=-\frac{1}{n-1}·\frac{cos\,x}{sin^{n-1}x}+\frac{n-2}{n-1}\int\frac{dx}{sin^{n-2}x} 15.∫sinnxdx=−n−11⋅sinn−1xcosx+n−1n−2∫sinn−2xdx
16. ∫ d x c o s n x = 1 n − 1 ⋅ s i n x c o s n − 1 x + n − 2 n − 1 ∫ d x c o s n − 2 x 16.\int\frac{dx}{cos^nx}=\frac{1}{n-1}·\frac{sin\,x}{cos^{n-1}x}+\frac{n-2}{n-1}\int\frac{dx}{cos^{n-2}x} 16.∫cosnxdx=n−11⋅cosn−1xsinx+n−1n−2∫cosn−2xdx
17. ∫ d x 1 ± sin x = tan x ∓ sec x + C 17.\int\frac{dx}{1±\sin{x}}=\tan{x}∓\sec{x}+C 17.∫1±sinxdx=tanx∓secx+C
18. ∫ d x 1 ± cos x = − cot x ± csc x + C 18.\int\frac{dx}{1±\cos{x}}=-\cot{x}±\csc{x}+C 18.∫1±cosxdx=−cotx±cscx+C
19. ∫ d x sin x cos x = ln ∣ tan x ∣ + C 19.\int\frac{dx}{\sin{x}\cos{x}}=\ln|\tan{x}|+C 19.∫sinxcosxdx=ln∣tanx∣+C
#############################################################
十二.含有 t a n x , c o t x , s e c x , c s c x tan\,x,cot\,x,sec\,x,csc\,x tanx,cotx,secx,cscx的形式
1. ∫ tan x d x = − ln ∣ cos x ∣ + C 1.\int\tan{x}dx=-\ln|\cos x|+C 1.∫tanxdx=−ln∣cosx∣+C
2. ∫ tan 2 x d x = − x + t a n x + C 2.\int \tan^2{x}dx=-x+tan\,x+C 2.∫tan2xdx=−x+tanx+C
3. ∫ tan n x d x = tan n − 1 x n − 1 − ∫ tan n − 2 x d x ( n ≠ 1 ) 3.\int \tan^n{x}dx=\frac{\tan^{n-1}{x}}{n-1}-\int\tan^{n-2}{x}dx\,(n≠1) 3.∫tannxdx=n−1tann−1x−∫tann−2xdx(n=1)
4. ∫ c o t x d x = ln ∣ s i n x ∣ + C 4.\int cot\,x\,dx=\ln|sin\,x|+C 4.∫cotxdx=ln∣sinx∣+C
5. ∫ cot 2 x d x = − x − c o t x + C 5.\int\cot^2{x}dx=-x-cot\,x+C 5.∫cot