数学分析(十五)-傅里叶级数1-傅里叶级数3:收敛定理【若以2π为周期的函数f在[−π,π]上按段光滑,则点x处f的傅里叶级收敛于f在点x的左右极限的算术平均值,若f在点x连续,则收敛于f(x)】

f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) ( 12 ) f(x) \sim \cfrac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \quad\quad(12) f(x)2a0+n=1(ancosnx+bnsinnx)(12)


下面的定理称为傅里叶级数收敛定理.

定理 15.3

若以 2 π 2 \pi 2π 为周期的函数 f f f [ − π , π ] [-\pi, \pi] [π,π] 上按段光滑, 则在每一点 x ∈ [ − π , π ] x \in[-\pi, \pi] x[π,π], f f f 的傅里叶级数 (12) 收敛于 f f f 在点 x x x的左、右极限的算术平均值, 即

f ( x + 0 ) + f ( x − 0 ) 2 = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) , \cfrac{f(x+0)+f(x-0)}{2}=\cfrac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right), 2f(x+0)+f(x0)=2a0+n=1(ancosnx+bnsinnx),

其中 a n , b n a_{n}, b_{n} an,bn f f f 的傅里叶系数.

下面先对定理中的某些概念作解释, 然后举例说明如何运用这个定理把函数展开成傅里叶级数. 关于收敛定理的证明将在 第3节 中进行.

我们知道, f f f 的导函数在 [ a , b ] [a, b] [a,b] 上连续, 则称 f f f [ a , b ] [a, b] [a,b]上光滑.

但若定义在 [ a , b ] [a, b] [a,b] 上除了至多有有限个第一类间断点的函数 f f f的导函数在 [ a , b ] [a, b] [a,b] 上除了至多有限个点外都存在且连续,在这有限个点上导函数 f ′ f^{\prime} f 的左、右极限存在, 则称 f f f [ a , b ] [a, b] [a,b]按段光滑.

根据上述定义,若函数 f f f [ a , b ] [a, b] [a,b]按段光滑,则有如下重要性质:

  • 1 ∘ f 1^{\circ} f 1f [ a , b ] [a, b] [a,b] 上可积.
  • 2 ∘ 2^{\circ} 2 [ a , b ] [a, b] [a,b] 上每一点都存在 f ( x ± 0 ) f(x \pm 0) f(x±0), 且有
    lim ⁡ t → 0 + f ( x + t ) − f ( x + 0 ) t = f ′ ( x + 0 ) , lim ⁡ t → 0 + f ( x − t ) − f ( x − 0 ) − t = f ′ ( x − 0 ) . \begin{array}{l} \lim \limits_{t \rightarrow 0^{+}} \cfrac{f(x+t)-f(x+0)}{t}=f^{\prime}(x+0), \\[2ex] \lim \limits_{t \rightarrow 0^{+}} \cfrac{f(x-t)-f(x-0)}{-t}=f^{\prime}(x-0) . \end{array} t0+limtf(x+t)f(x+0)=f(x+0),t0+limtf(xt)f(x0)=f(x0).
  • 3 ∘ 3^{\circ} 3 补充定义 f ′ f^{\prime} f [ a , b ] [a, b] [a,b]上那些至多有限个不存在点上的值后 (仍记为 f ′ f^{\prime} f ), f ′ f^{\prime} f [ a , b ] [a, b] [a,b] 上可积.

在这里插入图片描述
从几何图形上讲, 在区间 [ a , b ] [a, b] [a,b] 上按段光滑函数,是由有限个光滑弧段所组成, 它至多有有限个第一类间断点角点 (图 15-1).

收敛定理指出,

  • f f f 的傅里叶级数在点 x x x 处收敛于这一点上 f f f的左、右极限的算术平均值 f ( x + 0 ) + f ( x − 0 ) 2 \cfrac{f(x+0)+f(x-0)}{2} 2f(x+0)+f(x0);
  • 而当 f f f 在点 x x x连续时, 则有 f ( x + 0 ) + f ( x − 0 ) 2 = f ( x ) \cfrac{f(x+0)+f(x-0)}{2}=f(x) 2f(x+0)+f(x0)=f(x), 即此时 f f f的傅里叶级数收敛于 f ( x ) f(x) f(x).

于是有下面推论.

推论

f f f 是以 2 π 2 \pi 2π 为周期的连续函数, 且在 [ − π , π ] [-\pi, \pi] [π,π]上按段光滑, 则 f f f 的傅里叶级数在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上收敛于 f f f.

根据收敛定理的假设, f f f 是以 2 π 2 \pi 2π 为周期的函数,所以系数公式 ( 10 ) (10) (10)中的积分区间 [ − π , π ] [-\pi, \pi] [π,π] 可以改为长度为 2 π 2 \pi 2π 的任何区间,而不影响 a n , b n a_{n}, b_{n} an,bn的值:

a n = 1 π ∫ c c + 2 π f ( x ) cos ⁡ n x   d x , n = 0 , 1 , 2 , ⋯   , ( 1 0 ′ ) b n = 1 π ∫ c c + 2 π f ( x ) sin ⁡ n x   d x , n = 1 , 2 , ⋯   , \begin{array}{l} a_{n}=\cfrac{1}{\pi} \int_{c}^{c+2 \pi} f(x) \cos n x \mathrm{~d} x, n=0,1,2, \cdots, &\\[2ex] &(10')\\ b_{n}=\cfrac{1}{\pi} \int_{c}^{c+2 \pi} f(x) \sin n x \mathrm{~d} x, n=1,2, \cdots, & \end{array} an=π1cc+2πf(x)cosnx dx,n=0,1,2,,bn=π1cc+2πf(x)sinnx dx,n=1,2,,(10)

其中 c c c 为任何实数.

注意: 在具体讨论函数的傅里叶级数展开式时, 常只给出函数 f f f ( − π , π ] (-\pi, \pi] (π,π] (或 [ − π , π ) ) [-\pi, \pi)) [π,π))上的解析表达式,但读者应理解为它是定义在整个数轴上以 2 π 2 \pi 2π为周期的函数. 即在 ( − π , π ] (-\pi, \pi] (π,π] 以外的部分按函数在 ( − π , π ] (-\pi, \pi] (π,π]上的对应关系作周期延拓. 如 f f f ( − π , π ] (-\pi, \pi] (π<

  • 20
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值