f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) ( 12 ) f(x) \sim \cfrac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \quad\quad(12) f(x)∼2a0+n=1∑∞(ancosnx+bnsinnx)(12)
下面的定理称为傅里叶级数收敛定理.
定理 15.3
若以 2 π 2 \pi 2π 为周期的函数 f f f 在 [ − π , π ] [-\pi, \pi] [−π,π] 上按段光滑, 则在每一点 x ∈ [ − π , π ] x \in[-\pi, \pi] x∈[−π,π], f f f 的傅里叶级数 (12) 收敛于 f f f 在点 x x x的左、右极限的算术平均值, 即
f ( x + 0 ) + f ( x − 0 ) 2 = a 0 2 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) , \cfrac{f(x+0)+f(x-0)}{2}=\cfrac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right), 2f(x+0)+f(x−0)=2a0+n=1∑∞(ancosnx+bnsinnx),
其中 a n , b n a_{n}, b_{n} an,bn 为 f f f 的傅里叶系数.
下面先对定理中的某些概念作解释, 然后举例说明如何运用这个定理把函数展开成傅里叶级数. 关于收敛定理的证明将在 第3节 中进行.
我们知道, 若 f f f 的导函数在 [ a , b ] [a, b] [a,b] 上连续, 则称 f f f 在 [ a , b ] [a, b] [a,b]上光滑.
但若定义在 [ a , b ] [a, b] [a,b] 上除了至多有有限个第一类间断点的函数 f f f的导函数在 [ a , b ] [a, b] [a,b] 上除了至多有限个点外都存在且连续,在这有限个点上导函数 f ′ f^{\prime} f′ 的左、右极限存在, 则称 f f f 在 [ a , b ] [a, b] [a,b]上按段光滑.
根据上述定义,若函数 f f f 在 [ a , b ] [a, b] [a,b] 上按段光滑,则有如下重要性质:
- 1 ∘ f 1^{\circ} f 1∘f 在 [ a , b ] [a, b] [a,b] 上可积.
- 2 ∘ 2^{\circ} 2∘ 在 [ a , b ] [a, b] [a,b] 上每一点都存在 f ( x ± 0 ) f(x \pm 0) f(x±0), 且有
lim t → 0 + f ( x + t ) − f ( x + 0 ) t = f ′ ( x + 0 ) , lim t → 0 + f ( x − t ) − f ( x − 0 ) − t = f ′ ( x − 0 ) . \begin{array}{l} \lim \limits_{t \rightarrow 0^{+}} \cfrac{f(x+t)-f(x+0)}{t}=f^{\prime}(x+0), \\[2ex] \lim \limits_{t \rightarrow 0^{+}} \cfrac{f(x-t)-f(x-0)}{-t}=f^{\prime}(x-0) . \end{array} t→0+limtf(x+t)−f(x+0)=f′(x+0),t→0+lim−tf(x−t)−f(x−0)=f′(x−0). - 3 ∘ 3^{\circ} 3∘ 补充定义 f ′ f^{\prime} f′ 在 [ a , b ] [a, b] [a,b]上那些至多有限个不存在点上的值后 (仍记为 f ′ f^{\prime} f′ ), f ′ f^{\prime} f′ 在 [ a , b ] [a, b] [a,b] 上可积.
从几何图形上讲, 在区间 [ a , b ] [a, b] [a,b] 上按段光滑函数,是由有限个光滑弧段所组成, 它至多有有限个第一类间断点与角点 (图 15-1).
收敛定理指出,
- f f f 的傅里叶级数在点 x x x 处收敛于这一点上 f f f的左、右极限的算术平均值 f ( x + 0 ) + f ( x − 0 ) 2 \cfrac{f(x+0)+f(x-0)}{2} 2f(x+0)+f(x−0);
- 而当 f f f 在点 x x x连续时, 则有 f ( x + 0 ) + f ( x − 0 ) 2 = f ( x ) \cfrac{f(x+0)+f(x-0)}{2}=f(x) 2f(x+0)+f(x−0)=f(x), 即此时 f f f的傅里叶级数收敛于 f ( x ) f(x) f(x).
于是有下面推论.
推论
若 f f f 是以 2 π 2 \pi 2π 为周期的连续函数, 且在 [ − π , π ] [-\pi, \pi] [−π,π]上按段光滑, 则 f f f 的傅里叶级数在 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞) 上收敛于 f f f.
根据收敛定理的假设, f f f 是以 2 π 2 \pi 2π 为周期的函数,所以系数公式 ( 10 ) (10) (10)中的积分区间 [ − π , π ] [-\pi, \pi] [−π,π] 可以改为长度为 2 π 2 \pi 2π 的任何区间,而不影响 a n , b n a_{n}, b_{n} an,bn的值:
a n = 1 π ∫ c c + 2 π f ( x ) cos n x d x , n = 0 , 1 , 2 , ⋯ , ( 1 0 ′ ) b n = 1 π ∫ c c + 2 π f ( x ) sin n x d x , n = 1 , 2 , ⋯ , \begin{array}{l} a_{n}=\cfrac{1}{\pi} \int_{c}^{c+2 \pi} f(x) \cos n x \mathrm{~d} x, n=0,1,2, \cdots, &\\[2ex] &(10')\\ b_{n}=\cfrac{1}{\pi} \int_{c}^{c+2 \pi} f(x) \sin n x \mathrm{~d} x, n=1,2, \cdots, & \end{array} an=π1∫cc+2πf(x)cosnx dx,n=0,1,2,⋯,bn=π1∫cc+2πf(x)sinnx dx,n=1,2,⋯,(10′)
其中 c c c 为任何实数.
注意: 在具体讨论函数的傅里叶级数展开式时, 常只给出函数 f f f 在 ( − π , π ] (-\pi, \pi] (−π,π] (或 [ − π , π ) ) [-\pi, \pi)) [−π,π))上的解析表达式,但读者应理解为它是定义在整个数轴上以 2 π 2 \pi 2π为周期的函数. 即在 ( − π , π ] (-\pi, \pi] (−π,π] 以外的部分按函数在 ( − π , π ] (-\pi, \pi] (−π,π]上的对应关系作周期延拓. 如 f f f 为 ( − π , π ] (-\pi, \pi] (−π