数学分析 多元函数的极限和连续性(第16章)

在这里插入图片描述
一.平面点集与多元函数
1.平面点集
(1)坐标平面与平面点集:
在这里插入图片描述
在这里插入图片描述

注:①或简称"数对"
②一般地,对于 ∀ 2 ∀2 2个数集(或点集) A , B A,B A,B,记 A × B = { ( x , y )   ∣   x ∈ A , y ∈ B } A×B=\{(x,y)\,|\,x∈A,y∈B\} A×B={(x,y)xA,yB},称为 A A A B B B直积;例如 A = { ( u , v )   ∣   u 2 + v 2 ≤ 1 } , B = [ 0 , 1 ] A=\{(u,v)\,|\,u^2+v^2≤1\},B=[0,1] A={(u,v)u2+v21},B=[0,1],则 A × B = { ( u , v , w )   ∣   u 2 + v 2 ≤ 1 , 0 ≤ w ≤ 1 } A×B=\{(u,v,w)\,|\,u^2+v^2≤1,0≤w≤1\} A×B={(u,v,w)u2+v21,0w1}

(2)邻域与空心邻域:
在这里插入图片描述
在这里插入图片描述

注:空心邻域又称去心邻域

(3)点与点集的关系:
在这里插入图片描述
在这里插入图片描述
(4)一些重要的平面点集:
在这里插入图片描述

约定空集 Φ Φ Φ既是开集又是闭集;还可证明在一切平面点集中,除空集外,只有 R 2 = { ( x , y )   ∣   x , y ∈ R } R^2=\{(x,y)\,|\,x,y∈R\} R2={(x,y)x,yR}既是开集又是闭集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(5)点集的直径:
在这里插入图片描述

根据距离概念,可证明:对 R 2 R^2 R2 ∀ 3 ∀3 3 P 1 , P 2 , P 3 P_1,P_2,P_3 P1,P2,P3,都有 ρ ( P 1 , P 2 ) ≤ ρ ( P 1 , P 3 ) + ρ ( P 2 , P 3 ) ρ(P_1,P_2)≤ρ(P_1,P_3)+ρ(P_2,P_3) ρ(P1,P2)ρ(P1,P3)+ρ(P2,P3)上式称为三角不等式

2. R 2 R^2 R2上的完备性定理
在这里插入图片描述
(1)平面点列的收敛性:
在这里插入图片描述

定理16.1(柯西准则):平面点列 { P n } \{P_n\} {Pn}收敛的充要条件是:对 ∀ ε > 0 , ∃ N ∈ N + ∀ε>0,∃N∈N_+ ε>0,NN+,使得当 n > N n>N n>N时,对 ∀ p ∈ N + ∀p∈N_+ pN+,有 ρ ( P n , P n + p ) < ε ρ(P_n,P_{n+p})<ε ρ(Pn,Pn+p)<ε
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)闭域套定理:

定理16.2:设 { D n } \{D_n\} {Dn} R 2 R^2 R2中的闭域列,其满足:
D n + 1 ⊂ D n   ( n = 1 , 2... ) D_{n+1}\sub D_n\,(n=1,2...) Dn+1Dn(n=1,2...)
d n = d ( D n ) , lim ⁡ n → ∞ d n = 0 d_n=d(D_n),\displaystyle\lim_{n\to\infty}d_n=0 dn=d(Dn),nlimdn=0
∃ ∃ 唯一的点 P 0 ∈ D n   ( n = 1 , 2... ) P_0∈D_n\,(n=1,2...) P0Dn(n=1,2...)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
闭域套定理是 R R R中闭区间套定理(定理7.1)的直接推广
另外,把 { D n } \{D_n\} {Dn}改为闭集套时,定理16.2仍成立

推论:对上述闭域套 { D n } \{D_n\} {Dn},任给 ε > 0 , ∃ N ∈ N + ε>0,∃N∈N_+ ε>0,NN+,当 n > N n>N n>N时,有 D n ⊂ U ( P 0 ; ε ) D_n\sub U(P_0;ε) DnU(P0;ε)

(3)聚点定理:

定理16.3:设 E ⊂ R 2 E\sub R^2 ER2为有界无限点集,则 E E E R 2 R^2 R2中至少有1个聚点
在这里插入图片描述
定理16.3’:有界无限点列 { P n } ⊂ R 2 \{P_n\}\sub R^2 {Pn}R2必存在收敛子列 { P n k } \{P_{n_k}\} {Pnk}

(4)有限覆盖定理:

定理16.4:设 D ⊂ R 2 D\sub R^2 DR2为1有界闭域, { Δ α } \{Δ_α\} {Δα}为1开域族,它覆盖了 D D D(即 D ⊂ ∪ α Δ α D\sub ∪_αΔ_α DαΔα),则在 { Δ α } \{Δ_α\} {Δα}中必定存在有限个开域 Δ 1 , Δ 2 . . . Δ n Δ_1,Δ_2...Δ_n Δ1,Δ2...Δn,它们同样覆盖了 D D D(即 D ⊂ ∪ α = 1 n Δ i D\sub ∪_{α=1}^nΔ_i Dα=1nΔi)
在这里插入图片描述
在更一般的情况下,可将该定理中的 D D D改为有界闭集,从而 Δ α ⊂ R 2 Δ_α\sub R^2 ΔαR2为1族开集,此时定理仍成立

3.二元函数
(1)定义:
在这里插入图片描述
(2)有界函数与无界函数:
在这里插入图片描述
4.多元函数:
在这里插入图片描述
二.二元函数的极限
在这里插入图片描述
1.二元函数的极限
(1)二元函数极限的定义:
在这里插入图片描述
在这里插入图片描述
(2)二元函数极限的存在性:

定理16.5: lim ⁡ P → P 0 , P ∈ D f ( P ) = A \displaystyle\lim_{P→P_0,P∈D}f(P)=A PP0,PDlimf(P)=A的充要条件是:对于 D D D的任一子集 E E E,只要 P 0 P_0 P0 E E E的聚点,就有 lim ⁡ P → P 0 , P ∈ E f ( P ) = A \displaystyle\lim_{P→P_0,P∈E}f(P)=A PP0,PElimf(P)=A

推论1:设 E 1 ⊂ D , P 0 E_1\sub D,P_0 E1D,P0 E 1 E_1 E1的聚点,若 lim ⁡ P → P 0 , P ∈ E 1 f ( P ) \displaystyle\lim_{P→P_0,P∈E_1}f(P) PP0,PE1limf(P)不存在,则 lim ⁡ P → P 0 , P ∈ D f ( P ) \displaystyle\lim_{P→P_0,P∈D}f(P) PP0,PDlimf(P)也不存在

推论2:设 E 1 , E 2 ⊂ D , P 0 E_1,E_2\sub D,P_0 E1,E2D,P0是它们的聚点,若存在极限 lim ⁡ P → P 0 , P ∈ E 1 f ( P ) = A 1 , lim ⁡ P → P 0 , P ∈ E 2 f ( P ) = A 2 \displaystyle\lim_{P→P_0,P∈E_1}f(P)=A_1,\displaystyle\lim_{P→P_0,P∈E_2}f(P)=A_2 PP0,PE1limf(P)=A1,PP0,PE2limf(P)=A2 A 1 ≠ A 2 A_1≠A_2 A1=A2,则 lim ⁡ P → P 0 , P ∈ D f ( P ) \displaystyle\lim_{P→P_0,P∈D}f(P) PP0,PDlimf(P)不存在

推论3:极限 lim ⁡ P → P 0 , P ∈ D f ( P ) \displaystyle\lim_{P→P_0,P∈D}f(P) PP0,PDlimf(P)存在的充要条件是:对于 D D D中任一满足 P n ≠ P 0 P_n≠P_0 Pn=P0 lim ⁡ n → ∞ P n = P 0 \displaystyle\lim_{n\to\infty}P_n=P_0 nlimPn=P0的点列 { P n } \{P_n\} {Pn},它对应的数列 { f ( P n ) } \{f(P_n)\} {f(Pn)}都收敛

下面2个例子是上述定理及推论的应用:
在这里插入图片描述
在这里插入图片描述

(3)二元函数非正常极限的定义:
在这里插入图片描述
在这里插入图片描述
(4)二元函数极限的运算法则:
在这里插入图片描述
2.重极限累次极限
(1)重极限与累次极限:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(2)重极限与累次极限的关系:

重极限与累次极限是2个不同的概念,二者的存在性没有必然的蕴含关系
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

但重极限和累次极限在一定条件下也是有联系的
定理16.6:若 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)存在重极限 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) \displaystyle\lim_{(x,y)→(x_0,y_0)}f(x,y) (x,y)(x0,y0)limf(x,y)与累次极限 lim ⁡ x → x 0 lim ⁡ y → y 0 f ( x , y )   ( 或 lim ⁡ y → y 0 lim ⁡ x → x 0 f ( x , y ) ) \displaystyle\lim_{x\to x_0}\displaystyle\lim_{y\to y_0}f(x,y)\,(或\displaystyle\lim_{y\to y_0}\displaystyle\lim_{x\to x_0}f(x,y)) xx0limyy0limf(x,y)(yy0limxx0limf(x,y))则二者必相等
在这里插入图片描述
在这里插入图片描述
注意:①该定理保证了重极限和1个累次极限都存在时,二者必相等,但却得不出另1个累次极限的存在性的结论
②可以给出较该定理弱一些的充分条件:若 ( i ) lim ⁡ ( x , y ) → ( a , b ) f ( x , y ) (i)\displaystyle\lim_{(x,y)→(a,b)}f(x,y) (i)(x,y)(a,b)limf(x,y)存在且等于 A   ( i i ) y A\:(ii)y A(ii)y b b b的某邻域内,有 lim ⁡ x → a f ( x , y ) = φ ( y ) \displaystyle\lim_{x\to a}f(x,y)=φ(y) xalimf(x,y)=φ(y),则 lim ⁡ y → b lim ⁡ x → a f ( x , y ) = A \displaystyle\lim_{y\to b}\displaystyle\lim_{x\to a}f(x,y)=A yblimxalimf(x,y)=A

推论1:若累次极限 lim ⁡ x → x 0 lim ⁡ y → y 0 f ( x , y ) , lim ⁡ y → y 0 lim ⁡ x → x 0 f ( x , y ) \displaystyle\lim_{x\to x_0}\displaystyle\lim_{y\to y_0}f(x,y),\displaystyle\lim_{y\to y_0}\displaystyle\lim_{x\to x_0}f(x,y) xx0limyy0limf(x,y),yy0limxx0limf(x,y)和重极限 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) \displaystyle\lim_{(x,y)→(x_0,y_0)}f(x,y) (x,y)(x0,y0)limf(x,y)都存在,则三者相等
注意:①该推论给出了累次极限次序可交换的1个充分条件

推论2:若累次极限 lim ⁡ x → x 0 lim ⁡ y → y 0 f ( x , y ) 与 lim ⁡ y → y 0 lim ⁡ x → x 0 f ( x , y ) \displaystyle\lim_{x\to x_0}\displaystyle\lim_{y\to y_0}f(x,y)与\displaystyle\lim_{y\to y_0}\displaystyle\lim_{x\to x_0}f(x,y) xx0limyy0limf(x,y)yy0limxx0limf(x,y)存在但不相等,则重极限 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) \displaystyle\lim_{(x,y)→(x_0,y_0)}f(x,y) (x,y)(x0,y0)limf(x,y)必不存在
注意:①该推论可用于否定重极限的存在性

三.二元函数的连续性
在这里插入图片描述
在这里插入图片描述
1.二元函数的连续性
(1)连续的定义:
在这里插入图片描述
(2)全增量与偏增量:
在这里插入图片描述
在这里插入图片描述
(3)复合函数的连续性:

定理16.7:设函数 u = φ ( x , y ) , v = ψ ( x , y ) u=φ(x,y),v=ψ(x,y) u=φ(x,y),v=ψ(x,y) x y xy xy平面上点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的某邻域内有定义,并在点 P 0 P_0 P0处连续;函数 f ( x , y ) f(x,y) f(x,y) u v uv uv平面上点 Q 0 ( u 0 , v 0 ) Q_0(u_0,v_0) Q0(u0,v0)的某邻域内有定义,并在点 Q 0 Q_0 Q0处连续,其中 u 0 = φ ( x 0 , y 0 ) , v 0 = ψ ( x 0 , y 0 ) u_0=φ(x_0,y_0),v_0=ψ(x_0,y_0) u0=φ(x0,y0),v0=ψ(x0,y0);则复合函数 g ( x , y ) = f ( φ ( x , y ) , ψ ( x , y ) ) g(x,y)=f(φ(x,y),ψ(x,y)) g(x,y)=f(φ(x,y),ψ(x,y))在点 P 0 P_0 P0处也连续
在这里插入图片描述
还可证明:若二元函数在某点处连续,则与一元函数一样,可以证明其在该点附近具有局部有界性,局部保号性,相应的有理运算的各个法则

2.有界闭域上连续函数的性质
(1)有界性与最大/小值定理:

定理16.8:若函数 f f f在有界闭域 D ⊂ R 2 D\sub R^2 DR2上连续,则 f f f D D D上有界,且能取得最大值与最小值
在这里插入图片描述

(2)一致连续性定理:

定理16.9:若函数 f f f在有界闭域 D ⊂ R 2 D\sub R^2 DR2上连续,则 f f f D D D上一致连续,即对 ∀ ε > 0 ∀ε>0 ε>0,总 ∃ ∃ 只依赖于 ε ε ε δ > 0 δ>0 δ>0,使对 ∀ ∀ 满足 ρ ( P , Q ) < δ ρ(P,Q)<δ ρ(P,Q)<δ的点 P , Q P,Q P,Q,有 ∣ f ( P ) − f ( Q ) ∣ < ε |f(P)-f(Q)|<ε f(P)f(Q)<ε
在这里插入图片描述

(3)介值性定理:

定理16.10:设函数 f f f在区域 D ⊂ R 2 D\sub R^2 DR2上连续,若 P 1 , P 2 P_1,P_2 P1,P2 D D D ∀ 2 ∀2 2点,且 f ( P 1 ) < f ( P 2 ) f(P_1)<f_(P_2) f(P1)<f(P2),则对任何满足不等式 f ( P 1 ) < μ < f ( P 2 ) f(P_1)<μ<f(P_2) f(P1)<μ<f(P2) μ ∈ R μ∈R μR,必 ∃ ∃ P 0 ∈ D P_0∈D P0D,使得 f ( P 0 ) = μ f(P_0)=μ f(P0)=μ
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值