一.平面点集与多元函数
1.平面点集
(1)坐标平面与平面点集:
注:①或简称"数对"
②一般地,对于 ∀ 2 ∀2 ∀2个数集(或点集) A , B A,B A,B,记 A × B = { ( x , y ) ∣ x ∈ A , y ∈ B } A×B=\{(x,y)\,|\,x∈A,y∈B\} A×B={(x,y)∣x∈A,y∈B},称为 A A A与 B B B的直积;例如 A = { ( u , v ) ∣ u 2 + v 2 ≤ 1 } , B = [ 0 , 1 ] A=\{(u,v)\,|\,u^2+v^2≤1\},B=[0,1] A={(u,v)∣u2+v2≤1},B=[0,1],则 A × B = { ( u , v , w ) ∣ u 2 + v 2 ≤ 1 , 0 ≤ w ≤ 1 } A×B=\{(u,v,w)\,|\,u^2+v^2≤1,0≤w≤1\} A×B={(u,v,w)∣u2+v2≤1,0≤w≤1}
(2)邻域与空心邻域:
注:空心邻域又称去心邻域
(3)点与点集的关系:
(4)一些重要的平面点集:
约定空集 Φ Φ Φ既是开集又是闭集;还可证明在一切平面点集中,除空集外,只有 R 2 = { ( x , y ) ∣ x , y ∈ R } R^2=\{(x,y)\,|\,x,y∈R\} R2={(x,y)∣x,y∈R}既是开集又是闭集
(5)点集的直径:
根据距离概念,可证明:对 R 2 R^2 R2上 ∀ 3 ∀3 ∀3点 P 1 , P 2 , P 3 P_1,P_2,P_3 P1,P2,P3,都有 ρ ( P 1 , P 2 ) ≤ ρ ( P 1 , P 3 ) + ρ ( P 2 , P 3 ) ρ(P_1,P_2)≤ρ(P_1,P_3)+ρ(P_2,P_3) ρ(P1,P2)≤ρ(P1,P3)+ρ(P2,P3)上式称为三角不等式
2.
R
2
R^2
R2上的完备性定理
(1)平面点列的收敛性:
定理16.1(柯西准则):平面点列 { P n } \{P_n\} {Pn}收敛的充要条件是:对 ∀ ε > 0 , ∃ N ∈ N + ∀ε>0,∃N∈N_+ ∀ε>0,∃N∈N+,使得当 n > N n>N n>N时,对 ∀ p ∈ N + ∀p∈N_+ ∀p∈N+,有 ρ ( P n , P n + p ) < ε ρ(P_n,P_{n+p})<ε ρ(Pn,Pn+p)<ε
(2)闭域套定理:
定理16.2:设 { D n } \{D_n\} {Dn}是 R 2 R^2 R2中的闭域列,其满足:
① D n + 1 ⊂ D n ( n = 1 , 2... ) D_{n+1}\sub D_n\,(n=1,2...) Dn+1⊂Dn(n=1,2...)
② d n = d ( D n ) , lim n → ∞ d n = 0 d_n=d(D_n),\displaystyle\lim_{n\to\infty}d_n=0 dn=d(Dn),n→∞limdn=0
则 ∃ ∃ ∃唯一的点 P 0 ∈ D n ( n = 1 , 2... ) P_0∈D_n\,(n=1,2...) P0∈Dn(n=1,2...)
闭域套定理是 R R R中闭区间套定理(定理7.1)的直接推广
另外,把 { D n } \{D_n\} {Dn}改为闭集套时,定理16.2仍成立
推论:对上述闭域套 { D n } \{D_n\} {Dn},任给 ε > 0 , ∃ N ∈ N + ε>0,∃N∈N_+ ε>0,∃N∈N+,当 n > N n>N n>N时,有 D n ⊂ U ( P 0 ; ε ) D_n\sub U(P_0;ε) Dn⊂U(P0;ε)
(3)聚点定理:
定理16.3:设 E ⊂ R 2 E\sub R^2 E⊂R2为有界无限点集,则 E E E在 R 2 R^2 R2中至少有1个聚点
定理16.3’:有界无限点列 { P n } ⊂ R 2 \{P_n\}\sub R^2 {Pn}⊂R2必存在收敛子列 { P n k } \{P_{n_k}\} {Pnk}
(4)有限覆盖定理:
定理16.4:设 D ⊂ R 2 D\sub R^2 D⊂R2为1有界闭域, { Δ α } \{Δ_α\} {Δα}为1开域族,它覆盖了 D D D(即 D ⊂ ∪ α Δ α D\sub ∪_αΔ_α D⊂∪αΔα),则在 { Δ α } \{Δ_α\} {Δα}中必定存在有限个开域 Δ 1 , Δ 2 . . . Δ n Δ_1,Δ_2...Δ_n Δ1,Δ2...Δn,它们同样覆盖了 D D D(即 D ⊂ ∪ α = 1 n Δ i D\sub ∪_{α=1}^nΔ_i D⊂∪α=1nΔi)
在更一般的情况下,可将该定理中的 D D D改为有界闭集,从而 Δ α ⊂ R 2 Δ_α\sub R^2 Δα⊂R2为1族开集,此时定理仍成立
3.二元函数
(1)定义:
(2)有界函数与无界函数:
4.多元函数:
二.二元函数的极限
1.二元函数的极限
(1)二元函数极限的定义:
(2)二元函数极限的存在性:
定理16.5: lim P → P 0 , P ∈ D f ( P ) = A \displaystyle\lim_{P→P_0,P∈D}f(P)=A P→P0,P∈Dlimf(P)=A的充要条件是:对于 D D D的任一子集 E E E,只要 P 0 P_0 P0是 E E E的聚点,就有 lim P → P 0 , P ∈ E f ( P ) = A \displaystyle\lim_{P→P_0,P∈E}f(P)=A P→P0,P∈Elimf(P)=A
推论1:设 E 1 ⊂ D , P 0 E_1\sub D,P_0 E1⊂D,P0是 E 1 E_1 E1的聚点,若 lim P → P 0 , P ∈ E 1 f ( P ) \displaystyle\lim_{P→P_0,P∈E_1}f(P) P→P0,P∈E1limf(P)不存在,则 lim P → P 0 , P ∈ D f ( P ) \displaystyle\lim_{P→P_0,P∈D}f(P) P→P0,P∈Dlimf(P)也不存在
推论2:设 E 1 , E 2 ⊂ D , P 0 E_1,E_2\sub D,P_0 E1,E2⊂D,P0是它们的聚点,若存在极限 lim P → P 0 , P ∈ E 1 f ( P ) = A 1 , lim P → P 0 , P ∈ E 2 f ( P ) = A 2 \displaystyle\lim_{P→P_0,P∈E_1}f(P)=A_1,\displaystyle\lim_{P→P_0,P∈E_2}f(P)=A_2 P→P0,P∈E1limf(P)=A1,P→P0,P∈E2limf(P)=A2但 A 1 ≠ A 2 A_1≠A_2 A1=A2,则 lim P → P 0 , P ∈ D f ( P ) \displaystyle\lim_{P→P_0,P∈D}f(P) P→P0,P∈Dlimf(P)不存在
推论3:极限 lim P → P 0 , P ∈ D f ( P ) \displaystyle\lim_{P→P_0,P∈D}f(P) P→P0,P∈Dlimf(P)存在的充要条件是:对于 D D D中任一满足 P n ≠ P 0 P_n≠P_0 Pn=P0且 lim n → ∞ P n = P 0 \displaystyle\lim_{n\to\infty}P_n=P_0 n→∞limPn=P0的点列 { P n } \{P_n\} {Pn},它对应的数列 { f ( P n ) } \{f(P_n)\} {f(Pn)}都收敛
下面2个例子是上述定理及推论的应用:
(3)二元函数非正常极限的定义:
(4)二元函数极限的运算法则:
2.重极限累次极限
(1)重极限与累次极限:
(2)重极限与累次极限的关系:
重极限与累次极限是2个不同的概念,二者的存在性没有必然的蕴含关系
但重极限和累次极限在一定条件下也是有联系的
定理16.6:若 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)存在重极限 lim ( x , y ) → ( x 0 , y 0 ) f ( x , y ) \displaystyle\lim_{(x,y)→(x_0,y_0)}f(x,y) (x,y)→(x0,y0)limf(x,y)与累次极限 lim x → x 0 lim y → y 0 f ( x , y ) ( 或 lim y → y 0 lim x → x 0 f ( x , y ) ) \displaystyle\lim_{x\to x_0}\displaystyle\lim_{y\to y_0}f(x,y)\,(或\displaystyle\lim_{y\to y_0}\displaystyle\lim_{x\to x_0}f(x,y)) x→x0limy→y0limf(x,y)(或y→y0limx→x0limf(x,y))则二者必相等
注意:①该定理保证了重极限和1个累次极限都存在时,二者必相等,但却得不出另1个累次极限的存在性的结论
②可以给出较该定理弱一些的充分条件:若 ( i ) lim ( x , y ) → ( a , b ) f ( x , y ) (i)\displaystyle\lim_{(x,y)→(a,b)}f(x,y) (i)(x,y)→(a,b)limf(x,y)存在且等于 A ( i i ) y A\:(ii)y A(ii)y在 b b b的某邻域内,有 lim x → a f ( x , y ) = φ ( y ) \displaystyle\lim_{x\to a}f(x,y)=φ(y) x→alimf(x,y)=φ(y),则 lim y → b lim x → a f ( x , y ) = A \displaystyle\lim_{y\to b}\displaystyle\lim_{x\to a}f(x,y)=A y→blimx→alimf(x,y)=A
推论1:若累次极限 lim x → x 0 lim y → y 0 f ( x , y ) , lim y → y 0 lim x → x 0 f ( x , y ) \displaystyle\lim_{x\to x_0}\displaystyle\lim_{y\to y_0}f(x,y),\displaystyle\lim_{y\to y_0}\displaystyle\lim_{x\to x_0}f(x,y) x→x0limy→y0limf(x,y),y→y0limx→x0limf(x,y)和重极限 lim ( x , y ) → ( x 0 , y 0 ) f ( x , y ) \displaystyle\lim_{(x,y)→(x_0,y_0)}f(x,y) (x,y)→(x0,y0)limf(x,y)都存在,则三者相等
注意:①该推论给出了累次极限次序可交换的1个充分条件
推论2:若累次极限 lim x → x 0 lim y → y 0 f ( x , y ) 与 lim y → y 0 lim x → x 0 f ( x , y ) \displaystyle\lim_{x\to x_0}\displaystyle\lim_{y\to y_0}f(x,y)与\displaystyle\lim_{y\to y_0}\displaystyle\lim_{x\to x_0}f(x,y) x→x0limy→y0limf(x,y)与y→y0limx→x0limf(x,y)存在但不相等,则重极限 lim ( x , y ) → ( x 0 , y 0 ) f ( x , y ) \displaystyle\lim_{(x,y)→(x_0,y_0)}f(x,y) (x,y)→(x0,y0)limf(x,y)必不存在
注意:①该推论可用于否定重极限的存在性
三.二元函数的连续性
1.二元函数的连续性
(1)连续的定义:
(2)全增量与偏增量:
(3)复合函数的连续性:
定理16.7:设函数 u = φ ( x , y ) , v = ψ ( x , y ) u=φ(x,y),v=ψ(x,y) u=φ(x,y),v=ψ(x,y)在 x y xy xy平面上点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的某邻域内有定义,并在点 P 0 P_0 P0处连续;函数 f ( x , y ) f(x,y) f(x,y)在 u v uv uv平面上点 Q 0 ( u 0 , v 0 ) Q_0(u_0,v_0) Q0(u0,v0)的某邻域内有定义,并在点 Q 0 Q_0 Q0处连续,其中 u 0 = φ ( x 0 , y 0 ) , v 0 = ψ ( x 0 , y 0 ) u_0=φ(x_0,y_0),v_0=ψ(x_0,y_0) u0=φ(x0,y0),v0=ψ(x0,y0);则复合函数 g ( x , y ) = f ( φ ( x , y ) , ψ ( x , y ) ) g(x,y)=f(φ(x,y),ψ(x,y)) g(x,y)=f(φ(x,y),ψ(x,y))在点 P 0 P_0 P0处也连续
还可证明:若二元函数在某点处连续,则与一元函数一样,可以证明其在该点附近具有局部有界性,局部保号性,相应的有理运算的各个法则
2.有界闭域上连续函数的性质
(1)有界性与最大/小值定理:
定理16.8:若函数 f f f在有界闭域 D ⊂ R 2 D\sub R^2 D⊂R2上连续,则 f f f在 D D D上有界,且能取得最大值与最小值
(2)一致连续性定理:
定理16.9:若函数 f f f在有界闭域 D ⊂ R 2 D\sub R^2 D⊂R2上连续,则 f f f在 D D D上一致连续,即对 ∀ ε > 0 ∀ε>0 ∀ε>0,总 ∃ ∃ ∃只依赖于 ε ε ε的 δ > 0 δ>0 δ>0,使对 ∀ ∀ ∀满足 ρ ( P , Q ) < δ ρ(P,Q)<δ ρ(P,Q)<δ的点 P , Q P,Q P,Q,有 ∣ f ( P ) − f ( Q ) ∣ < ε |f(P)-f(Q)|<ε ∣f(P)−f(Q)∣<ε
(3)介值性定理:
定理16.10:设函数 f f f在区域 D ⊂ R 2 D\sub R^2 D⊂R2上连续,若 P 1 , P 2 P_1,P_2 P1,P2为 D D D中 ∀ 2 ∀2 ∀2点,且 f ( P 1 ) < f ( P 2 ) f(P_1)<f_(P_2) f(P1)<f(P2),则对任何满足不等式 f ( P 1 ) < μ < f ( P 2 ) f(P_1)<μ<f(P_2) f(P1)<μ<f(P2)的 μ ∈ R μ∈R μ∈R,必 ∃ ∃ ∃点 P 0 ∈ D P_0∈D P0∈D,使得 f ( P 0 ) = μ f(P_0)=μ f(P0)=μ