高等代数(七)-线性变换07:不变子空间

§ 7 § 7 §7 不变子空间
这一节我们再来介绍一个关于线性变换的重要概念一一不变子空间.
同时利用不变子空间的概念,
来说明线性变换的矩阵的化简与线性变换的内在联系. 这样,
对上面的结果可以有进一步的了解.
定义 7 设 A \mathscr{A} A 是数域 P P P 上线性空间 V V V 的线性变换, W W W V V V
的子空间. 如果 W W W 中的向量在 A \mathscr{A} A 下的像仍在 W W W 中, 换句话说,
对于 W W W 中主一向量 ξ \xi ξ, 有 A ξ ∈ W \mathscr{A} \xi \in W AξW, 我们就称 W W W
A \mathbb{A} A 的不变子空间,简称 A − \mathscr{A}- A 子空间。
例 1 整个空间 V V V 和零子空间 { 0 } \{0\} { 0}, 对于每个线性变换 A \mathscr{A} A
来说都是 A − \mathscr{A}- A 子空间.
2 A 2 \mathscr{A} 2A 的值域与核都是 A \mathscr{A} A-子空间.
按定义, A \mathscr{A} A 的值域 A V \mathscr{A} V AV V V V 中的向量在
A \mathscr{A} A 下的像的集合, 它当然也包含 A V \mathscr{A} V AV 中向量的像.所以
A V \mathscr{A} V AV A \mathscr{A} A 的不变子空间.
A \mathscr{A} A 的核是被 A \mathscr{A} A 变成零的向量的集合,
核中向量的像是零, 自然在核中,因此核是不变子空间.
例 3 若线性变换 A \mathscr{A} A B \mathscr{B} B 是可交换的,则
B \mathscr{B} B 的核与值域都是 A − \mathscr{A}- A 子空间.
B \mathscr{B} B 的核 V 0 V_{0} V0 中任取一向量 ξ \xi ξ, 则
B ( A ξ ) = ( B A ) ξ = ( A B ) ξ = A ( B ξ ) = A 0 = 0. \mathscr{B}(\mathscr{A} \xi)=(\mathscr{B} \mathscr{A}) \xi=(\mathscr{A} \mathscr{B}) \boldsymbol{\xi}=\mathscr{A}(\mathscr{B} \boldsymbol{\xi})=\mathscr{A} \mathbf{0}=\mathbf{0} . B(Aξ)=(BA)ξ=(AB)ξ=A(Bξ)=A0=0.
所以 A ξ \mathscr{A} \xi Aξ B \mathscr{B} B 下的像是零, 即
A ξ ∈ V 0 \mathscr{A} \xi \in V_{0} AξV0. 这就证明了 V 0 V_{0} V0 A \mathscr{A} A-子空间.
B \mathscr{B} B 的值域 B V \mathscr{B} V BV 中任取一向量
B η \mathscr{B} \boldsymbol{\eta} Bη, 则
A ( B η ) = B ( A η ) ∈ B V . \mathscr{A}(\mathscr{B} \boldsymbol{\eta})=\mathscr{B}(\mathscr{A} \boldsymbol{\eta}) \in \mathscr{B} V . A(Bη)=B(Aη)BV.
因此 B V \mathscr{B} V BV 也是 A \mathscr{A} A-子空间.
因为 A \mathscr{A} A 的多项式 f ( A ) f(\mathscr{A}) f(A) 是和 A \mathscr{A} A
可交换的, 所以 f ( A ) f(\mathscr{A}) f(A) 的值域与核都是 A \mathscr{A} A-子空间.
这种 A \mathscr{A} A-子空间是经常碰到的.
例 4 任何一个子空间都是数乘变换的不变子空间.
这是由于,按定义子空间对于数量乘法是封闭的.
特征向量与一维不变子空间之间有着紧密的关系. 设 W W W 是一维
A \mathscr{A} A-子空间, ξ \boldsymbol{\xi} ξ W W W中任何一个非零向量,
它构成 W W W 的基. 按 A \mathscr{A} A-子空间的定义, A ξ ∈ W \mathscr{A} \xi \in W AξW,
它必定是 ξ \xi ξ 的一个倍数, 即
s ξ = λ 0 ξ .  s \xi=\lambda_{0} \xi \text {. } sξ=λ0ξ
这说明 ξ \xi ξ A \mathscr{A} A 的特征向量,而 W W W 即是由 ξ \xi ξ 生成的一维
A \mathscr{A} A-子空间.
反过来, 设 ξ \xi ξ A \mathscr{A} A 風于特征值 λ 0 \lambda_{0} λ0
的一个特征向量, 则 ξ \xi ξ 以及它的任一倍数在 A \mathscr{A} A 下的像是原像的
λ 0 \lambda_{0} λ0 倍, 仍旧是 ξ \xi ξ 的一个倍数. 这说明 ξ \xi ξ
的倍数构成一个一维 A − \mathscr{A}- A 子空间.
显然, A \mathscr{A} A 的属于特征值 λ 0 \lambda_{0} λ0 的特征子空间
V λ 0 V_{\lambda_{0}} Vλ0 也是 A − \mathscr{A}- A 子空间.
我们指出, A \mathscr{A} A-子空间的和与交还是 A \mathscr{A} A-子空间.
A \mathscr{A} A 是线性空间 V V V 的线性变换, W W W A − \mathcal{A}- A
子空间. 由于 W W W 中向量在 A \mathscr{A} A 下的像仍在 W W W中,
这就使得有可能不必在整个空间 V V V 中来考虑 A \mathscr{A} A,
而只在不变子空间 W W W 中考虑 A \mathscr{A} A, 即把 A \mathscr{A} A 看成是 W W W
的一个线性变换,称为 A \mathscr{A} A 在不变子空间 W W W 上引起的变换.
为了区别起见,我们用符号 A ∣ W \mathscr{A} \mid W AW 来表示它;
但是在很多情况下,仍然可用 A \mathscr{A} A 来表示而不致引起混淆.
必须在概念上弄清楚 A \mathscr{A} A A ∣ W \mathscr{A} \mid W AW 的异同:
A \mathscr{A} A V V V 的线性变换, V V V 中每个向量在 A \mathscr{A} A
下都有确定的像; A ∣ W \mathscr{A} \mid W AW 是不变子空间 W W W 上的线性变换,对于
W W W 中任一向量 ξ \xi ξ,有
( A ∣ W ) ξ = A ξ .  (\mathscr{A} \mid W) \xi=\mathscr{A} \xi \text {. } (AW)ξ=Aξ
但是对于 V V V 中不属于 W W W 的向量 η \boldsymbol{\eta} η 来说,
( A ∣ W ) η (\mathscr{A} \mid W) \boldsymbol{\eta} (AW)η 是没有意义的.
例如, 任一线性变换在它的核上引起的变换就是零变换, 而在特征子空间
V λ 0 V_{\lambda_{0}} Vλ0 上引起的变换是数乘变换 λ 0 \lambda_{0} λ0.
不难看出, 如果线性空间 V V V 的子空间 W W W 是由向量组
α 1 , α 2 , ⋯   , α \alpha_{1}, \alpha_{2}, \cdots, \alpha α1,α2,,α, 生成的, 即 W = W= W=
L ( α 1 , α 2 , ⋯   , α 1 ) L\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{1}\right) L(α1,α2,,α1),
W W W A \mathscr{A} A-子空间的充分必要条件为
A α 1 , A α 2 , ⋯   , A α 1 \mathscr{A} \boldsymbol{\alpha}_{1}, \mathscr{A} \boldsymbol{\alpha}_{2}, \cdots, \mathscr{A} \boldsymbol{\alpha}_{1} Aα1,Aα2,,Aα1
全属于 W W W. 必要性是显然的. 现在来证充分性. 如果
A α 1 , A α 2 , ⋯   , A α , 全属于  W , 由于  W  中每个向量  \mathscr{A} \boldsymbol{\alpha}_{1}, \mathscr{A} \boldsymbol{\alpha}_{2}, \cdots, \mathscr{A} \boldsymbol{\alpha}_{\text {, 全属于 } W \text {, 由于 } W \text { 中每个向量 }} Aα1,Aα2

  • 18
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值