机器学习数学基础:线代(3)

2.3.4 求解线性方程组的算法

下面简单的介绍一些Ax=b 的解的求解方法。现在我们假设是有解的,如果没有解就要求助于近似解,这需要线性回归的方法以后再说。

再特别的例子中,我们可以定义可逆矩阵A,Ax=b 的解就是 x=A^-1 b 。其中A要是方阵并可逆。虽然这种例子很特别,但是再这种假设下(A需要有线性独立列)可以完成以下转换。
在这里插入图片描述
在这里插入图片描述 啥伪逆确定Ax-=b 的解,这也是最小限度的最小二乘解。但是这种方法需要很多计算来矩阵相乘和计算逆矩阵,并且由于精度问题也不推荐这个,下面简单介绍另一种放法来求线性方程组的解。

高斯消除再计算中起到了关键作用,可以检测向量集是否是线性独立,就算矩阵的逆,计算矩阵的秩,并确定基础向量空间。高斯消除是一种直观并创造性的方式来解决数千变量的方程组。但是对于百万级别的,那就不实际了,it is impractical as the required number of arithmetic operations scales cubically in the number of simultaneous equations.。。我真是看不明白这句话。。

实际上许多线性方程组都是通过固定迭代的方式来直接解决。例如 Richardson method, the Jacobi method, the Gauß-Seidel method, successive over-relaxation method, or Krylov subspace methods,例如共轭梯度,一般最小化残差或双共轭梯度。。。我一个都不知道欸。。。

让 x* 为Ax=b 的解,这些迭代方法的关键思想就是构建迭代形式在这里插入图片描述
为了合适的C 和 d 可以减少每次迭代并收敛于x* 的残差在这里插入图片描述,我们介绍允许比较两个向量相似性的标准在这里插入图片描述这就是后话了。。。

所以唠叨了一大堆啥也没学到。。。

2.4 向量空间

研究向量空间,就是向量存在的结构空间。还会正式化向量的概念。。介绍组的概念,就是元素的几何并定义在这些元素上的操作,来保持集合内部的一些结构的完整,

2.4.1 组

组再计算机科学中有很重要的作用。除了提供集合操作的基本框架,再密码学,编程理论,绘图中也很重要。

在这里插入图片描述
以下人话版来自脑补连接

群是一个集合G,连同一个运算"·",它结合任何两个元素a和b而形成另一个元素,记为a·b。符号"·"是对具体给出的运算,比如整数加法的一般占位符。要具备成为群的资格,这个集合和运算(G,·)必须满足叫做群公理的四个要求:

公理1. 封闭性: 对于所有G中的元素a, b,运算a·b的结果也在G中。

公理2. 结合性: 对于所有G中的a, b和c,等式 (a·b)·c = a· (b·c)成立。

公理3. 恒等元: 存在G中的一个元素e,使得对于所有G中的元素a,等式e·a = a·e = a成立。

公理4. 逆元: 对于每个G中的a,存在G中的一个元素b使得a·b = b·a = e,这里的e是恒等元。

实际上,在群G中,这四条公理必须成立。

进行群运算的次序是极重要的。换句话说,把元素a与元素b结合,所得到的结果不一定与把元素b与元素a结合相同;亦即,下列等式不一定恒成立:

a ⋅ b = b ⋅ a

这个等式在整数对于加法下的群中总是成立的,因为对于任何两个整数都有a + b = b + a(加法的交换律)。但是在对称群的例子中不总是成立。使等式a·b = b·a总是成立的群叫做阿贝尔群(以尼尔斯·阿贝尔命名)。因此,整数加法群是阿贝尔群,而对称群不是。

在这里插入图片描述G就是阿贝尔群。。。

举一些栗子:

  • (Z,+)是阿贝尔组
  • (N0,+) 不是组,没有逆元
  • (Z, *) 不是组,不是所有元素都有逆元
  • (R{0}, ·) 是阿贝尔组
  • 在这里插入图片描述
  • (R^n×n, ·) 封闭性和关联性参考矩阵乘法,中立元就是单位矩阵In ,逆元:如果A的逆存在那么组就存在,这个叫一般线性群(GL(n, R))。由于矩阵乘法不可交换,所以不是阿贝尔组。

2.4.2 向量空间

上面我们看到的集合内部的运算,现在同时考虑内部加法和外部乘法(与标量相乘)。可以认为内部是加法的形式,外部是缩放的形式。

实数向量空间V = (v +, ·) 是有两种操纵的集合(额第一个应该是加法吧)在这里插入图片描述
这里:

  • (v,+) 是阿贝尔组
  • 分配性,结合性在这里插入图片描述
  • 外部操作的恒等元 ∀x ∈ V : 1·x = x

x ∈ V 元素x就叫向量。(v, +) 的恒等元是零向量 0=[0,0,0,0…0] T . 内部操作叫向量加法,元素λ∈R称为标量,外部运算 是标量的乘积。

备注:向量乘法。向量乘法常用于很多程序语言,但是被矩阵乘法的规则限制了:我们通常认为向量是 nX1 的矩阵。所以我们定义的矩阵乘法是ab^T ∈ R^n×n( 外乘积) a^T b∈ R( 内/标量/点乘积)

一些向量空间的重要栗子:

在这里插入图片描述

以后就使用V 来代表(v ,+ , ·), x ∈ V 简化代表向量v 。

备注:向量空间 Rn, Rn×1, R1×n仅在向量的写法上不同,对于前两个我们使用列向量在这里插入图片描述,后一个就是x 的转置了。

2.4.3 向量子空间

就是向量空间的子空间,有着与向量空间一样的特性。向量子空间是机器学习的核心,以后我们会看见使用向量子空间来进行降维。

u ⊆ V, u 不属于 ∅. Then U = (u , +, ·) 这就是向量子空间(线性子空间)。其中的加法和乘法操作限制到了 U + U R X U。
记 U ⊆ V 为子空间。当然子空间继承了父空间的特性,包括阿贝尔组的特性(结合,分配,恒等元)。为了确定是否是子空间还需要确定:
在这里插入图片描述

举一些栗子:

  • 对每个V ,都有的子空间就是V本身和{0}.
  • 在这里插入图片描述

这个图中只有D 是R^2 的子空间。A,C闭合特性不对,B不包含0

  • 齐次线性方程组Ax=0 的解集,在这里插入图片描述n个未知数x是R^n的子空间。

  • 非齐次线性方程组的解集 Ax=b b不等于0,不是R^n的子空间。

  • 任意多个子空间的交集是其本身。

备注:每个子空间U ⊆ (Rn, +, ·),都是齐次线性方程组Ax = 0 for x ∈ R^n 的解空间。.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值