捷联惯导系统学习5.1(最小方差估计和线性最小方差估计)

最小方差估计(最小均方误差MMSE,也称条件期望估计)

使方差最小即:
X : 系 统 状 态 量 X:系统状态量 X:
V : 干 扰 噪 声 V:干扰噪声 V:
X ~ : 估 计 值 与 系 统 状 态 误 差 \tilde{X}:估计值与系统状态误差 X~:
E X : 数 学 期 望 E_X:数学期望 EX:
M M S E [ X ^ ] = M S E [ X ^ ] m i n = t r ( E [ X ~ X ~ T ] ) m i n MMSE[\hat X]=MSE[\hat X]_{min}=tr(E[\tilde{X}\tilde{X}^T])_{min} MMSE[X^]=MSE[X^]min=tr(E[X~X~T])min
M S E [ X ^ ] = E [ [ X − X ^ ] [ X − X ^ ] ] = ∫ − ∞ ∞ ∫ − ∞ ∞ [ x − X ^ ( z ) ] T [ x − X ^ ( z ) ] p ( x , z ) d x d z = ∫ − ∞ ∞ ∫ − ∞ ∞ [ x − X ^ ( z ) ] T [ x − X ^ ( z ) ] p ( x ∣ z ) p ( z ) d x d z = ∫ − ∞ ∞ P z ( z ) { x T x p ( x ∣ z ) d x − 2 X ^ ( z ) ∫ − ∞ ∞ x p ( x ∣ z ) d x + X ^ ( z ) T X ^ ( z ) ∫ − ∞ ∞ p ( x ∣ z ) d } d z = ∫ − ∞ ∞ P z ( z ) { E X [ X T X ∣ z ] − 2 X ^ ( z ) E X [ X ∣ z ] + X ^ ( z ) T X ^ ( z ) } d z = ∫ − ∞ ∞ P z ( z ) { E X [ X T X ∣ z ] − E X T [ X ∣ z ] E X [ X ∣ z ] E X T [ X ∣ z ] E X [ X ∣ z ] − 2 X ^ ( z ) E X [ X ∣ z ] + X ^ ( z ) T X ^ ( z ) } d z = ∫ − ∞ ∞ P z ( z ) { E X [ X T X ∣ z ] − E X T [ X ∣ z ] E X [ X ∣ z ] } d z + ∫ − ∞ ∞ P z ( z ) [ E X [ X ∣ z ] − X ^ ( z ) ] T [ E X [ X ∣ z ] − X ^ ( z ) ] d z MSE[\hat X]=E[[X-\hat X][X-\hat X]] \\ =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}[x-\hat X(z)]^T[x-\hat X(z)]p(x,z)dxdz\\ =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}[x-\hat X(z)]^T[x-\hat X(z)]p(x|z)p(z)dxdz\\ =\int_{-\infty}^{\infty}P_z(z)\{x^Txp(x|z)dx-2\hat X(z)\int_{-\infty}^{\infty} xp(x|z)dx+\hat X(z)^T\hat X(z)\int_{-\infty}^{\infty}p(x|z)d\}dz\\ =\int_{-\infty}^{\infty}P_z(z)\{E_X[X^TX|z]-2\hat X(z)E_X[X|z]+\hat X(z)^T\hat X(z)\}dz\\ =\int_{-\infty}^{\infty}P_z(z)\{E_X[X^TX|z]-E^T_X[X|z]E_X[X|z]E^T_X[X|z]E_X[X|z]-2\hat X(z)E_X[X|z]+\hat X(z)^T\hat X(z)\}dz \\ =\int_{-\infty}^{\infty}P_z(z)\{E_X[X^TX|z]-E^T_X[X|z]E_X[X|z]\}dz +\int_{-\infty}^{\infty}P_z(z)[E_X[X|z]-\hat X(z)]^T[E_X[X|z]-\hat X(z)]dz MSE[X^]=E[[XX^][XX^]]=[xX^(z)]T[xX^(z)]p(x,z)dxdz=[xX^(z)]T[xX^(z)]p(xz)p(z)dxdz=Pz(z){xTxp(xz)dx2X^(z)xp(xz)dx+X^(z)TX^(z)p(xz)d}dz=Pz(z){EX[XTXz]2X^(z)EX[Xz]+X^(z)TX^(z)}dz=Pz(z){EX[XTXz]EXT[Xz]EX[Xz]EXT[Xz]EX[Xz]2X^(z)EX[Xz]+X^(z)TX^(z)}dz=Pz(z){EX[XTXz]EXT[Xz]EX[Xz]}dz+Pz(z)[EX[Xz]X^(z)]T[EX[Xz]X^(z)]dz
其中:
第一个式子 ∫ − ∞ ∞ P z ( z ) { E X [ X T X ∣ z ] − E X T [ X ∣ z ] E X [ X ∣ z ] } d z \int_{-\infty}^{\infty}P_z(z)\{E_X[X^TX|z]-E^T_X[X|z]E_X[X|z]\}dz Pz(z){EX[XTXz]EXT[Xz]EX[Xz]}dz X ^ ( z ) \hat X(z) X^(z)无关;
P Z ( Z ) P_Z(Z) PZ(Z)为非负且不恒为0, [ E X [ X ∣ z ] − X ^ ( z ) ] T [ E X [ X ∣ z ] − X ^ ( z ) ] [E_X[X|z]-\hat X(z)]^T[E_X[X|z]-\hat X(z)] [EX[Xz]X^(z)]T[EX[Xz]X^(z)]必定非负,想要协方差取最小值,必须满足:
E X [ X ∣ z ] − X ^ ( z ) = 0 E_X[X|z]-\hat X(z)=0 EX[Xz]X^(z)=0
得到最小误差: X ^ M I N ( Z ) = E [ X ∣ Z ] \hat X_{MIN}(Z)=E[X|Z] X^MIN(Z)=E[XZ]
得到最小方差求解:
p Z ( z ) : 边 缘 密 度 函 数 p_Z(z):边缘密度函数 pZ(z):
p ( x , z ) : 条 件 概 率 密 度 函 数 p(x,z):条件概率密度函数 p(x,z):
X ^ ( z ) = E X [ X ∣ Z ] = ∫ − ∞ ∞ x p ( x ∣ z ) d x = ∫ − ∞ ∞ x p ( x , z ) p Z ( z ) d x \hat X(z)=E_X[X|Z]=\int_{-\infty}^{\infty}xp(x|z)dx=\int_{-\infty}^{\infty}x\frac{p(x,z)}{p_Z(z)}dx X^(z)=EX[XZ]=xp(xz)dx=xpZ(z)p(x,z)dx
得到最小方差求解的简化(假设估计量和观测量都符合正太分布):
实际中, p Z ( z ) : 边 缘 密 度 函 数 p_Z(z):边缘密度函数 pZ(z): p ( x , z ) : 条 件 概 率 密 度 函 数 p(x,z):条件概率密度函数 p(x,z):很难得到,假设观测量与被测量都符合正太分布:
C : 协 防 差 矩 阵 C:协防差矩阵 C:
m : 均 值 m:均值 m:
Y ∼ N ( m Y , C Y ) Y = [ X Z ] , m Y = [ m X m Z ] , C Y = [ C X C X Z C Z X C Z ] C X Z = C o v ( X , Z ) = C o v T ( Z , X ) Y\sim N(m_Y,C_Y)\\ Y=\left[\begin{matrix} X\\Z\end{matrix} \right],m_Y=\left[\begin{matrix} m_X\\m_Z\end{matrix} \right],C_Y=\left[\begin{matrix} C_X&C_{XZ}\\C_{ZX}&C_Z\end{matrix} \right] \\ C_{XZ}=Cov(X,Z)=Cov^T(Z,X) YN(mY,CY)Y=[XZ],mY=[mXmZ],CY=[CXCZXCXZCZ]CXZ=Cov(X,Z)=CovT(Z,X)
Y的正太分布密度函数为:
∣ C Y ∣ = d e t ( C Y ) |C_Y|^=det(C_Y) CY=det(CY)
p ( y ) = p ( x , z ) = 1 ( 2 π ) ( n + m ) / 2 ∣ C Y ∣ 1 / 2 e − 1 2 ( y − m Y ) T C Y − 1 ( y − m Y ) p(y)=p(x,z)=\frac{1}{(2\pi)^{(n+m)/2}|C_Y|^{1/2}}e^{-\frac 1 2(y-m_Y)^TC_Y^{-1}(y-m_Y)} p(y)=p(x,z)=(2π)(n+m)/2CY1/21e21(ymY)TCY1(ymY)
已知:
m X ∣ Z = m X + C X Z C Z − 1 ( z − m Z ) m_{X|Z}=m_X+C_{XZ}C_{Z}^{-1}(z-m_Z) mXZ=mX+CXZCZ1(zmZ)
C X ∣ Z = C X − C X Z C Z − 1 C Z X C_{X|Z}=C_X-C_{XZ}C_Z^{-1}C_{ZX} CXZ=CXCXZCZ1CZX
可以得到(推导略):
p ( x , z ) = 1 ( 2 π ) n / 2 ∣ C X ∣ Z ∣ 1 / 2 e − 1 2 ( x − m X ∣ Z ) T C X ∣ Z − 1 ( x − m X ∣ Z ) × p Z ( z ) p Z ( z ) = ∫ − ∞ ∞ p ( x , z ) d x = 1 ( 2 π ) m / 2 ∣ C X ∣ Z ∣ 1 / 2 e − 1 2 ( x − m Z ) T C Z − 1 ( x − m Z ) p ( x ∣ z ) = 1 ( 2 π ) n / 2 ∣ C X ∣ Z ∣ 1 / 2 e − 1 2 ( x − m X ∣ Z ) T C X ∣ Z − 1 ( x − m X ∣ Z ) p(x,z)=\frac{1}{(2\pi)^{n/2}|C_{X|Z}|^{1/2}}e^{-\frac 1 2(x-m_{X|Z})^TC_{X|Z}^{-1}(x-m_{X|Z})}×p_Z(z)\\ p_Z(z)=\int_{-\infty}^{\infty}p(x,z)dx=\frac{1}{(2\pi)^{m/2}|C_{X|Z}|^{1/2}}e^{-\frac 1 2(x-m_{Z})^TC_{Z}^{-1}(x-m_{Z})}\\ p(x|z)=\frac{1}{(2\pi)^{n/2}|C_{X|Z}|^{1/2}}e^{-\frac 1 2(x-m_{X|Z})^TC_{X|Z}^{-1}(x-m_{X|Z})} p(x,z)=(2π)n/2CXZ1/21e21(xmXZ)TCXZ1(xmXZ)×pZ(z)pZ(z)=p(x,z)dx=(2π)m/2CXZ1/21e21(xmZ)TCZ1(xmZ)p(xz)=(2π)n/2CXZ1/21e21(xmXZ)TCXZ1(xmXZ)
得到正太分布的最小均值和方差矩阵为:
最 小 均 值 : X ^ M V = X ^ M I N ( Z ) = E [ X ∣ Z ] = ∫ − ∞ ∞ x p ( x ∣ z ) d z = m X ∣ Z = m X + C X Z C Z − 1 ( z − m z ) 最小均值:\hat X_{MV}=\hat X_{MIN}(Z)=E[X|Z]=\int_{-\infty}^{\infty}xp(x|z)dz=m_{X|Z}=m_X+C_{XZ}C_Z^{-1}(z-m_z) X^MV=X^MIN(Z)=E[XZ]=xp(xz)dz=mXZ=mX+CXZCZ1(zmz)
方 差 : E [ X ~ M V X ~ M V T ] = ∫ − ∞ ∞ C X ∣ Z P z ( z ) d z = C X − C X Z C Z − 1 C Z X 方差:E[\tilde{X}_{MV}\tilde{X}_{MV}^T]=\int_{-\infty}^{\infty}C_{X|Z}P_z(z)dz=C_X-C_{XZ}C_Z^{-1}C_{ZX} E[X~MVX~MVT]=CXZPz(z)dz=CXCXZCZ1CZX

最小均方误差观测量与系统状态量的关系:
m X ∣ Z = m X + C X Z C Z − 1 ( z − m Z ) m_{X|Z}=m_X+C_{XZ}C_{Z}^{-1}(z-m_Z) mXZ=mX+CXZCZ1(zmZ)
C X ∣ Z = C X − C X Z C Z − 1 C Z X C_{X|Z}=C_X-C_{XZ}C_Z^{-1}C_{ZX} CXZ=CXCXZCZ1CZX
C X ∣ Z − > 0 ( 或 C Z − > ∞ ) C_{X|Z}->0(或C_Z->\infty) CXZ>0(CZ>), m X ∣ Z − > m X m_{X|Z}->m_X mXZ>mX,此时观测量与状态量相关性很小,m_X越等于最好估计。
C X ∣ Z = C X − C X Z C Z − 1 C Z X < C X C_{X|Z}=C_X-C_{XZ}C_Z^{-1}C_{ZX}<C_X CXZ=CXCXZCZ1CZX<CX引入观测后,不确定比 C X ( 先 验 误 差 ) C_X(先验误差) CX()降低了

线性最小方差估计(LMV)

精度不如MMSE,但计算量小,对于正太分布相性最小方差等价与最小均方误差估计。
无论观测模型是线性的还是非线性的,均使用观测量的线性组合建模来对状态进行估计。
指标函数为:
L M V ( X ) = E [ X ~ T X ~ ] ∣ x ^ = x ^ L M V LMV(X)=E[\tilde X^T \tilde X]|_{\hat x=\hat x_{LMV}} LMV(X)=E[X~TX~]x^=x^LMV
线性模型: X ^ = A Z + b \hat X=AZ+b X^=AZ+b
做变换 L M V ( X ) = t r ( E [ X ~ T X ~ ] ) = t r ( E [ ( X − A Z − b ) ( X − A Z − b ) ) ] ) = t r ( ( A − C X Z C Z − 1 ) C Z ( A − C X Z C Z − 1 ) T ) + t r ( C X − C X Z C Z − 1 C Z X ) + t r ( ( m X − A m Z − b ) ( m X − A m Z − b ) ) LMV(X)=tr(E[\tilde X^T \tilde X])=tr(E[(X-AZ-b)(X-AZ-b))]) \\ =tr((A-C_{XZ}C_Z^{-1})C_Z(A-C_{XZ}C_Z^{-1})^T)+tr(C_X-C_{XZ}C_Z^{-1}C_{ZX})+tr((m_X-Am_Z-b)(m_X-Am_Z-b)) LMV(X)=tr(E[X~TX~])=tr(E[(XAZb)(XAZb))])=tr((ACXZCZ1)CZ(ACXZCZ1)T)+tr(CXCXZCZ1CZX)+tr((mXAmZb)(mXAmZb))
可知:
( A − C X Z C Z − 1 ) C Z ( A − C X Z C Z − 1 ) T (A-C_{XZ}C_Z^{-1})C_Z(A-C_{XZ}C_Z^{-1})^T (ACXZCZ1)CZ(ACXZCZ1)T:非负
t r ( C X − C X Z C Z − 1 C Z X ) tr(C_X-C_{XZ}C_Z^{-1}C_{ZX}) tr(CXCXZCZ1CZX):与待定系数无关
t r ( ( m X − A m Z − b ) ( m X − A m Z − b ) ) tr((m_X-Am_Z-b)(m_X-Am_Z-b)) tr((mXAmZb)(mXAmZb)):非负
想求的最小值只需
{ m X − A m Z − b = 0 A − C X Z C Z − 1 = 0 \begin{cases} m_X-Am_Z-b=0&\\ A-C_{XZ}C_Z^{-1}=0\\ \end{cases} {mXAmZb=0ACXZCZ1=0
可解得: A = C X Z C Z − 1 , b = m X − C X Z C Z − 1 m Z A=C_{XZ}C_Z^{-1},b=m_X-C_{XZ}C_Z^{-1}m_Z A=CXZCZ1,b=mXCXZCZ1mZ
得到最小方差的指标函数:
L M V ( X ^ ) = C X Z C Z − 1 Z + m X − C X Z C Z − 1 m Z LMV(\hat X)=C_{XZ}C_Z^{-1}Z+m_X-C_{XZ}C_Z^{-1}m_Z LMV(X^)=CXZCZ1Z+mXCXZCZ1mZ
得到线性最小方差的期望:
E Z [ X ^ L M V ] = E ( X ) E_Z[\hat X_{LMV}]=E(X) EZ[X^LMV]=E(X)
得到线性最小方差的协方差:
E [ X ~ L M V X ~ L M V T ] = C X − C X Z C Z − 1 C Z X E[\tilde X_{LMV} \tilde X_{LMV}^T]=C_X-C_{XZ}C_Z^{-1}C_{ZX} E[X~LMVX~LMVT]=CXCXZCZ1CZX
观测量与系统状态量的关系:
C o v ( X ~ L M V , Z ) = 0 Cov(\tilde{X}_{LMV},Z)=0 Cov(X~LMV,Z)=0
这表明线性最小方差的估计量与观测量Z不相关

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值