关于Anaconda+opencv+pycharm+pytorch

关于机器视觉学习安装anaconda,opencv,和pycharm的几点注意:

目录

  1. 清华镜像(2021.10月添加)
  2. anaconda
  3. opencv
  4. pycharm
  5. pytorch(2021.3.10添加)
  6. torchvison(2021.3.11添加)

0.清华镜像(2021.10月添加)

这次因为测试onecycle学习率策略,因此对许多包的版本进行了调整,比如torch、opencv、numpy、pillow、matploylib等
因为已经接触了一段时间的Linux系统操作,所以就顺手不少,因此想总结下自己感受,深度学习环境配置还是建议用anaconda+pychram,配置环境常用命令直接搜索即可,这里可以分享一篇知乎文章,总结的不错
知乎:Anaconda-用conda创建python虚拟环境–作者:巫婆
在anaconda的prompt中直接进入环境,激活后,一般如下即可,

pip install [包名] == 版本号
例如:pip install torch == 1.7.0。

如果出现什么问题,一般CSDN百度即可解决。这里需要注意的是,大部分同学问题其实都出现在各种包的版本号上面,除非另有说明,个人感觉不要装太新的包,也不要装太旧的包,一般装去年的就可以,另外比较大的包,也可以去清华镜像下载好,进入界面CRTL+F直接搜自己想要的包就行,也可以看见时间
清华镜像链接

1.anaconda

官网下载安装,也可以通过清华镜像下载,后者速度更快,推荐后者。
anaconda清华镜像链接:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
torchvision下载链接:TORCHVISON
其中配置环境变量等细节主要参考下面的链接
安装过程链接:https://blog.csdn.net/iefenghao/article/details/90741384
下载安装好以后 Win+R 打开cmd控制台:输入python,查看自己的python版本并记住,如下图所示:
本教程安装anaconda后python版本为3.7

2.opencv下载配置

opencv配置方式有几种,这里采用提前下载opencv包,通过pip方式安装。
opencv可以官网下载,这里依旧推荐镜像下载,下载链接如下:https://pypi.tuna.tsinghua.edu.cn/simple/opencv-python/
注意事项如图:
在这里插入图片描述
其中,64或32位就是对应系统的安装包。

将安装包复制粘贴到Anaconda3/Lib/site-packages目录下,

然后在此目录下打开cmd窗口(快捷键:鼠标选中Lib文件夹,按下shrift键,同时点击鼠标右键)输入:“pip install opencv_python-3.4.3-cp36-cp36m-win_amd64.whl”,点击回车进行安装。安装成功后若显示Successfully…,则表示安装成功。(在site-packages文件夹里有一个cvxxx.pyd的文件,将它重命名为cv2.pyd)

在命令行窗口输入 python,然后输入 import cv2 ,若出现 numpy.core.multiarray failed to import, 则运行 pip install -U numpy 重新安装numpy,再次输入 import cv2,若出现以下界面,则视为成功:

3.pycharm下载安装:

自行官网下载社区版,安装成功后打开File==>setting
在这里插入图片描述
选择对应python解释器。
网上还有很多关于这个的帖子,具体问题可自行百度搜索解决,本文如有错误敬请指正!

4.(2021.3.10日添加下载pytorch)

通过下载pytorch对应版本的whl文件,通过pip命令安装
各版本pytorch下载版本链接:各版本pytorch下载版本链接
打开anaconda prompt shell
在这里插入图片描述
详细安装过程可参考:https://blog.csdn.net/qq_38704904/article/details/95192856?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.control&dist_request_id=&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.control

5.(2021.3.11日添加下载torchvision)

下载安装torchvison包,下载链接和torch链接一样如下:
https://download.pytorch.org/whl/torch_stable.html
需要注意的是torch和torchvision版本之间的对应关系
在这里插入图片描述
torch为cpu版1.7.1,对应torchvision为cpu版0.8.2版
在这里插入图片描述
紧接着通过pip install 安装,可以通过
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
来加快下载速度,这个命令好像是从清华镜像下载
在这里插入图片描述
OKKK,后续有问题再会进行补充

### 配置 PyCharm 支持 PyTorchOpenCV 的开发环境 为了在 PyCharm 中成功配置支持 PyTorchOpenCV 的开发环境,以下是详细的说明: #### 创建 Anaconda 虚拟环境 通过 Conda 命令创建一个新的 Python 虚拟环境,并指定所需的 Python 版本。这一步可以通过以下命令完成: ```bash conda create -n pytorch_opencv_env python=3.8 ``` 这里我们命名为 `pytorch_opencv_env` 并设置 Python 版本为 3.8[^2]。 激活该虚拟环境: ```bash conda activate pytorch_opencv_env ``` #### 安装 PyTorch 安装适合当前硬件架构的 PyTorch 库。可以根据官方文档推荐的方式进行安装。例如,在 GPU 可用的情况下,可以执行如下命令: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 此命令会自动处理依赖关系并安装合适的 CUDA 工具链版本[^4]。 #### 安装 OpenCV-Python 由于某些情况下使用 Conda 安装 OpenCV-Python 存在兼容性问题[^3],因此建议采用 Pip 进行安装。首先卸载可能存在的旧版库: ```bash pip uninstall opencv-python opencv-contrib-python ``` 随后重新安装特定版本的 OpenCV-Python 和 contrib 扩展模块,确保两者版本匹配[^1]: ```bash pip install opencv-python==3.4.2.16 opencv-contrib-python==3.4.2.16 ``` 或者利用国内镜像加速下载过程: ```bash pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python==3.4.2.16 opencv-contrib-python==3.4.2.16 ``` #### 配置 PyCharm 使用上述虚拟环境 启动 PyCharm 后新建项目或打开现有项目,导航至 **File -> Settings -> Project: YourProjectName -> Python Interpreter** 页面。点击齿轮图标选择 **Add...** ,然后选取已创建好的 Conda 环境路径(通常位于 Anaconda 安装目录下的 envs 文件夹内)。确认无误后保存更改。 至此,您已经完成了基于 PyCharm 的深度学习开发环境搭建工作,其中包含了必要的框架和支持工具。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值