cec2013(python):鸡群优化算法(Chicken Swarm Optimization, CSO)

本文介绍了鸡群优化算法CSO在CEC2013SpecialSessiononReal-ParameterOptimization中的应用,展示了如何使用Python实现算法并求解28个测试函数,包括函数介绍、代码示例和结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、鸡群优化算法CSO求解cec2013

1.cec2013函数简介

CEC 2013 Special Session on Real-Parameter Optimization中共有28个测试函数维度可选择为10/30/50/100。

每个测试函数的详细信息如下表所示:

cec2013参考文献:

[1] Liang J J , Qu B Y , Suganthan P N , et al. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization. 2013.

鸡群优化算法CSO参考文献:

[1] MENG X , LIU Y , GAO X Z , et al. A new bio-inspired algorithm: chicken swarm optimization[J]. Lecture Notes in Computer Science ,2014 ,8794(1):86-94.

2.部分代码

from CEC2013.cec2013 import *
from CSO import CSO
import matplotlib.pyplot as plt
import numpy as np
#主程序
function_name =1 #测试函数1-28
SearchAgents_no = 50#种群大小
Max_iter = 100#迭代次数
dim=10#维度 10/30/50/100
lb=-100*np.ones(dim)#下限
ub=100*np.ones(dim)#上限
cec_functions = cec2013(dim,function_name)
fobj=cec_functions.func#目标函数
BestX,BestF,curve = CSO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解




#画收敛曲线图
if BestF>0:
    plt.semilogy(curve,color='r',linewidth=3,label='CSO')
else:
    plt.plot(curve,color='r',linewidth=3,label='CSO')
plt.xlabel("Iteration")
plt.ylabel("Fitness")
plt.xlim(0,Max_iter)
plt.title("F"+str(function_name))
plt.legend()
plt.savefig(str(function_name)+'.png')
plt.show()
print('\nThe best solution is:\n'+str(BestX))
print('\nThe best optimal value of the objective funciton is:\n'+str(BestF))

3.部分结果

二、完整python代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值