FJSP:霸王龙优化算法(Tyrannosaurus optimization,TROA)求解柔性作业车间调度问题(FJSP),提供MATLAB代码

112 篇文章 15 订阅
6 篇文章 0 订阅

一、柔性作业车间调度问题

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),是一种经典的组合优化问题。在FJSP问题中,有多个作业需要在多个机器上进行加工,每个作业由一系列工序组成,每个工序需要在特定的机器上完成。同时,每个机器一次只能处理一个工序,且每个工序的处理时间可能不同。FJSP问题的目标是找到一个最优的作业调度方案,使得所有作业的完成时间最小化。这个问题的难点在于需要考虑到多个作业、多个机器和多个工序之间的复杂关系,并且需要在有限的时间内找到最优解。
柔性作业车间调度问题( FJSP) 的描述如下:n个工件 { J , J 2 , . . , J n } \{J,J_2,..,J_n\} {J,J2,..,Jn}要在 m m m 台机器 { M 1 , M 2 , . . , M m } \{M_1,M_2,..,M_m\} {M1,M2,..,Mm} 上加工。每个工件包含一道或多道工序,工序顺序是预先确定的,每道工序可以在多台不同加工机器上进行加工,工序的加工时间随加工机器的不同而不同。调度目标是为每道工序选择最合适的机器、确定每台机器上各个工序的最佳加工顺序以及开工时间,使整个系统的某些性能指标达到最优。因此,柔性作业车间调度问题包含两个子问题:确定各工件的加工机器 (机器选择子问题) 和确定各个机器上的加工先后顺序 (工序排序子问题)。

此外,在加工过程中还需要满足下面的约束条件:
(1) 同一台机器同一时刻只能加工一个工件;
(2) 同一工件的同一道工序在同一时刻只能被一台机器加工;
(3) 每个工件的每道工序一旦开始加工不能中断;
(4) 不同工件之间具有相同的优先级;
(5)不同工件的工序之间没有先后约束,同一工件的工序之间有先后约束;
(6)所有工件在零时刻都可以被加工。

1.1符号描述

n : n: n:工件总数;
m : m: m: 机器总数;
i , e : i,e: i,e: 机器序号, i , e = 1 , 2 , 3 , . . . , m i,e=1,2,3,...,m i,e=1,2,3,...,m ;
j , k : j,k: j,k: 工件序号, j , k = 1 , 2 , 3 , . . . , n ; j,k=1,2,3,...,n; j,k=1,2,3,...,n; h j : h_j: hj:工件 j j j 的工序总数;
h , l : h,l: h,l: 工序序号, h = 1 , 2 , 3 , . . . , h j h=1,2,3,...,h_j h=1,2,3,...,hj ;
Ω j h : \Omega_{jh}: Ωjh:工件 j j j 的第 h h h 道工序的可选加工机器集;
m j h : m_{jh}: mjh:工件 j j j 的第 h h h 道工序的可选加工机器数;
O j h : O_{jh}: Ojh:工件 j j j 的第 h h h道工序;
M i j h : M_{ijh}: Mijh:工件 j j j 的第 h h h道工序在机器 i i i 上加工;
p i j h : p_{ijh}: pijh:工件 j j j的第 h h h道工序在机器 i i i上的加工时间;
s j h : s_{jh}: sjh:工件 j j j 的第 h h h 道工序加工开始时间;
c j h : c_{jh}: cjh:工件 j j j的第 h h h道工序加工完成时间;
d j : d_j: dj:工件 j j j 的交货期;
L L L: 一个足够大的正数;
C j C_j Cj: 每个工件的完成时间;
C max ⁡ : C_{\max}: Cmax: 最大完工时间;
T o : T o = ∑ j = 1 n h j T_o:\quad T_o=\sum_{j=1}^nh_j To:To=j=1nhj, 所有工件工序总数;
x i j h = { 1 , 如果工序 O j h 选择机器 i ; 0 , 否则; x_{ijh}=\begin{cases}1,\text{如果工序}O_{jh}\text{选择机器}i;\\0,\text{否则;}\end{cases} xijh={1,如果工序Ojh选择机器i;0,否则;
y i j h k l = { 1 , 如果 O i j h 先于 O i k l 加工 ; 0 , 否则 ; y_{ijhkl}=\begin{cases}1,\text{如果}O_{ijh}\text{先于}O_{ikl}\text{加工};\\0,\text{否则};\end{cases} yijhkl={1,如果Oijh先于Oikl加工;0,否则;

1.2约束条件

C 1 : s j h + x i j h × p i j h ≤ c j h C_{1}:s_{jh}+x_{ijh}\times p_{ijh}\leq c_{jh} C1:sjh+xijh×pijhcjh

其中: i = 1 , … , m ; j = 1 , … , n ; i=1,\ldots,m;j=1,\ldots,n; i=1,,m;j=1,,n; h = 1 , … , h j h=1,\ldots,h_j h=1,,hj
C 2 : c j h ≤ s j ( h + 1 ) C_{2}:c_{jh}\leq s_{j(h+1)} C2:cjhsj(h+1)
其中 : j = 1 , … , n ; h = 1 , . . . , h j − 1 :j=1,\ldots,n;h=1,...,h_j-1 :j=1,,n;h=1,...,hj1
C 3 : c j h j ≤ C max ⁡ C_{3}:c_{jh_j}\leq C_{\max} C3:cjhjCmax
其中: j = 1 , . . . , n j=1,...,n j=1,...,n
C 4 : s j h + p i j h ≤ s k l + L ( 1 − y i j h k l ) C_{4}:s_{jh}+p_{ijh}\leq s_{kl}+L(1-y_{ijhkl}) C4:sjh+pijhskl+L(1yijhkl)

其中 : j = 0 , … , n ; k = 1 , … , n ; h = 1 , … , h j ; l = 1 , … , h k ; i = 1 , … , m :j=0,\ldots,n;k=1,\ldots,n;h=1,\ldots,h_j;l=1,\ldots,h_k;i=1,\ldots,m :j=0,,n;k=1,,n;h=1,,hj;l=1,,hk;i=1,,m
C 5 : c j h ≤ s j ( h + 1 ) + L ( 1 − y i k l j ( h + 1 ) ) C_{5}:c_{jh}\leq s_{j(h+1)}+L(1-y_{iklj(h+1)}) C5:cjhsj(h+1)+L(1yiklj(h+1))

其中 : j = 1 , … , n ; k = 0 , … , n ; h = 1 , … , h j − 1 ; l = 1 , … , h k ; i = 1 , … , m :j=1,\ldots,n;k=0,\ldots,n;h=1,\ldots,h_j-1;\quad l=1,\ldots,h_k;\quad i=1,\ldots,m :j=1,,n;k=0,,n;h=1,,hj1;l=1,,hk;i=1,,m
h 1 : ∑ i = 1 m j h x i j h = 1 h_{1}:\sum_{i=1}^{m_{jh}}x_{ijh}=1 h1:i=1mjhxijh=1
其中: h = 1 , . . . , h j ; j = 1 , . . . , n ; h=1,...,h_j;j=1,...,n; h=1,...,hj;j=1,...,n;

h 2 : ∑ j = 1 n ∑ h = 1 h j y i j h k l = x i k l h_{2}:\sum_{j=1}^n\sum_{h=1}^{h_j}y_{ijhkl}=x_{ikl} h2:j=1nh=1hjyijhkl=xikl

其中: i = 1 , … , m ; k = 1 , … , n ; l = 1 , … , h k i=1,\ldots,m;k=1,\ldots,n;l=1,\ldots,h_k i=1,,m;k=1,,n;l=1,,hk
h 3 : ∑ i = 1 n ∑ i = 1 n k y i j h k l = x i j h h_{3}:\sum_{i=1}^n\sum_{i=1}^{n_k}y_{ijhkl}=x_{ijh} h3:i=1ni=1nkyijhkl=xijh

其中: i = 1 , … , m ; j = 1 , … , n ; h = 1 , … , h k i=1,\ldots,m;j=1,\ldots,n;\quad h=1,\ldots,h_k i=1,,m;j=1,,n;h=1,,hk
C 6 : s j h ≥ 0 , c j h ≥ 0 C_{6}:s_{jh}\geq0,c_{jh}\geq0 C6:sjh0,cjh0

其中 : j = 0 , 1 , . . . , n ; h = 1 , . . . , h j :j=0,1,...,n;h=1,...,h_j :j=0,1,...,n;h=1,...,hj

C 1 C_{1} C1 C 2 C_{2} C2表示每一个工件的工序先后顺序约束 ;
C 3 C_{3} C3表示工件的完工时间的约束,即每一个工件的完工时间不可能超过总的完工时间 ;
C 4 C_{4} C4 C 5 C_{5} C5表示同一时刻同一台机器只能加工一道工序 ;
h 1 h_{1} h1表示机器约束,即同一时刻同一道工序只能且仅能被一台机器加工;
h 2 h_{2} h2 h 3 h_{3} h3表示存在每一台机器上可以存在循环操作 ;
C 6 C_{6} C6表示各个参数变量必须是正数。

1.3目标函数

FJSP的目标函数是最大完工时间最小。完工时间是每个工件最后一道工序完成的时间,其中最大的那个时间就是最大完工时间(makespan)。它是衡量调度方案的最根本指标, 主要体现车间的生产效率,如下式所示:

f = min ⁡ ( max ⁡ l ≤ j ≤ n ( C j ) ) f=\min(\max_{\mathrm{l\leq}j\leq n}(C_j)) f=min(maxljn(Cj))

参考文献:
[1]张国辉.柔性作业车间调度方法研究[D].华中科技大学,2009.

二、算法简介

霸王龙优化算法(Tyrannosaurus optimization,TROA)由Venkata Satya Durga Manohar Sahu等人于2023年提出,该算法模拟霸王龙的狩猎行为,具有搜索速度快等优势。
参考文献:Venkata Satya Durga Manohar Sahu, Padarbinda Samal, Chinmoy Kumar Panigrahi,”Tyrannosaurus optimization algorithm: A new nature-inspired meta-heuristic algorithm for solving optimal control problems”,e-Prime - Advances in Electrical Engineering, Electronics and Energy,Volume 5,2023,100243,ISSN 2772-6711,https://doi.org/10.1016/j.prime.2023.100243.

原文链接:https://blog.csdn.net/weixin_46204734/article/details/133847832

三、算法求解FJSP

3.1部分代码

dim=2*sum(operaNumVec);
LB = -jobNum * ones(1, dim);
UB = jobNum * ones(1, dim);
Max_iteration = 100;
SearchAgents_no = 100;
fobj=@(x)fitness(x, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);

%% 优化算法求解FJSP
[fMin , bestX, Convergence_curve ] = TROA(SearchAgents_no,Max_iteration,LB,UB,dim,fobj);
machineTable=GetMachineTable(bestX, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);

%% 画收敛曲线图
figure
plot(Convergence_curve,'r-','linewidth',2)
xlabel('迭代次数')
ylabel('最大完工时间')
legend('TROA')
saveas(gca,'1.jpg');

3.2部分结果

在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码

下方名片

  • 15
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
本文介绍了使用Matlab实现多目标灰狼优化算法(Multi-Objective Grey Wolf Optimizer,MOGWO)来求解柔性作业车间调度问题(Flexible Job-Shop Scheduling Problem,FJSP)的方法。 1. 柔性作业车间调度问题 柔性作业车间调度问题是指在一台机器上,需要安排多个作业在多个工序上进行加工,每个作业需要在不同的工序上进行加工,每个工序需要一定的时间和资源,同时需要考虑不同的约束条件(如最早开始时间、最迟完成时间、作业间的优先关系等),目标是最小化完成所有作业的总时间或最小化机器的空闲时间。 2. 多目标灰狼优化算法 多目标灰狼优化算法是基于灰狼优化算法(Grey Wolf Optimizer,GWO)的多目标优化版本。该算法模拟了灰狼社会的行为,通过抓住“alpha”、“beta”和“delta”三个主导灰狼的行为来优化目标函数。多目标灰狼优化算法可以同时优化多个目标函数。 3. 求解柔性作业车间调度问题 求解柔性作业车间调度问题的过程可以分为以下几个步骤: (1)编写目标函数:将FJSP问题转化为目标函数,将多个目标函数合并成一个多目标函数。 (2)确定参数:确定算法的参数,如灰狼个数、最大迭代次数、交叉率等。 (3)初始化灰狼群体:根据问题的特性,初始化灰狼群体。 (4)灰狼优化过程:根据多目标灰狼优化算法,进行灰狼优化过程。 (5)结果分析:分析灰狼优化的结果,得到最优解。 4. Matlab实现 在Matlab中,可以使用以下代码实现MOGWO算法求解FJSP问题: % FJSP问题的目标函数 function f = FJSP(x) % x为决策变量,即作业的加工顺序 % 定义多个目标函数 f(1) = 计算完成所有作业的总时间 f(2) = 计算机器的空闲时间 % 将多个目标函数合并成一个多目标函数 f = [f(1) f(2)] end % MOGWO算法 function [bestx, bestf] = MOGWO(f, lb, ub, MaxIt, nPop, nObj, pCrossover, pMutation) % f为目标函数,lb和ub为决策变量的上下界,MaxIt为最大迭代次数,nPop为灰狼个数,nObj为目标函数个数,pCrossover和pMutation分别为交叉率和变异率 % 初始化灰狼群体 X = repmat(lb, nPop, 1) + rand(nPop, nObj).*(repmat(ub-lb, nPop, 1)); % 迭代优化过程 for it = 1:MaxIt % 计算适应度 F = zeros(nPop, nObj); for i = 1:nPop F(i,:) = f(X(i,:)); end % 更新最优解 [bestf, idx] = min(F); bestx = X(idx,:); % 更新灰狼位置 for i = 1:nPop % 计算灰狼位置 A = 2*rand(nObj,1)-1; C = 2*rand(nObj,1); D = abs(C.*bestx - X(i,:)); X1 = bestx - A.*D; % 交叉和变异 mask = rand(nObj,1) < pCrossover; X2 = X1; X2(~mask) = X(i,~mask); mask = rand(nObj,1) < pMutation; X3 = X2; X3(mask) = lb(mask) + rand(sum(mask),1).*(ub(mask)-lb(mask)); % 更新灰狼位置 X(i,:) = X3; end end end % 测试 % 假设有10个作业,每个作业需要在3个机器上进行加工 nJob = 10; nMachine = 3; % 初始化上下界 lb = zeros(1, nJob*nMachine); ub = ones(1, nJob*nMachine); % 假设最大迭代次数为100,灰狼个数为50,目标函数个数为2 MaxIt = 100; nPop = 50; nObj = 2; % 假设交叉率为0.8,变异率为0.3 pCrossover = 0.8; pMutation = 0.3; % 调用MOGWO算法求解FJSP问题 [bestx, bestf] = MOGWO(@FJSP, lb, ub, MaxIt, nPop, nObj, pCrossover, pMutation); % 输出结果 disp('Best Solution:'); disp(bestx); disp('Best Objective:'); disp(bestf);

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值