什么是全局平均池化,全局最大池化

全局平均池化与全局最大池化是深度学习中两种池化操作,它们分别计算每个feature map的所有像素点的平均值和最大值。全局深度池化则在通道(C)方向进行,输出为Nx1xHxW。通过举例说明,当输入为10个6x6特征图时,全局平均池化会输出10个数据点,形成一个1*10的特征向量,适用于分类任务。
摘要由CSDN通过智能技术生成

全局最大池化图示如下,它是取每个feature map的最大值。
在这里插入图片描述
全局均值池化跟全局最大池化的输入一般为NxCxHxW,输出为NxCx1x1但是实际上有时候我们还会有另外一个需求,就是全局深度池化,它的输出是Nx1xHxW。这个方式的池化通常会先把数据转换为NxH*WxC的方式,然后使用一维度最大/均值池化在C上完成,最后在转换为Nx1xHxW即可。。

下面举个例子,假如最后的一层的数据是10个6*6的特征图,global average pooling是将每一张特征图计算所有像素点的均值,输出一个数据值。
即对于每一层的6x6=36个像素点,计算这36个像素点的均值(最大值),由于共有10层,所以共得到10个数据。

这样10 个特征图就会输出10个数据点,将这些数据点组成一个1*10的向量的话,就成为一个特征向量,就可以送入到softmax的分类中计算。

推荐博客:
轻松学Pytorch – 全局池化层详解

### 全局平均池化全局最大池化的概念 #### 全局平均池化 全局平均池化是对输入特征图中的每一个通道的所有元素求算术平均值。这种操作能够有效地将整个特征图的信息压缩成单一数值,从而保留了更广泛的上下文信息[^2]。 #### 全局最大池化 相比之下,全局最大池化则是选取每个通道内的最大值作为该通道的代表值。这种方法倾向于捕捉最显著或最具激活性的部分,即那些对于特定类别最为重要的响应位置[^1]。 ### 实现方式对比 - **全局平均池化** 对于给定的一个大小为 \(H \times W\) 的二维特征图,在单个通道上执行如下运算: \[ output_c = \frac{1}{HW}\sum_{i=0}^{H-1}\sum_{j=0}^{W-1}input(i, j)_c \] 这里 `output_c` 表示第 c 个通道经过全局平均池化后的输出结果。 - **全局最大池化** 同样地,考虑相同尺寸的特征图及其某个固定通道,则有: \[ output_c = \max\limits_{(i,j)} input(i, j)_c \] 此处的最大函数会遍历所有像素并返回最高强度的那个点作为最终的结果。 ### 特性和应用场景差异 - **特性** - *全局平均池化* 更加关注整体分布情况,有助于平滑数据波动,并且由于不涉及任何权重更新过程,因此不会引入额外的学习参数,减少了过拟合的风险[^3]。 - *全局最大池化* 则强调突出显示最强信号源所在之处,这使得它特别适合用于定位目标物体的关键部位或是检测异常事件的发生地点。 - **应用场合** 当需要保持尽可能多的空间分辨率时(比如语义分割任务),通常会选择采用较小窗口的传统池化策略而非全局版本;而在其他情况下,如果目的是为了获得紧凑表达形式以便后续处理(例如分类问题),那么这两种全局池化技术都是不错的选择,具体取决于实际需求偏好稳定表征还是敏感反应模式[^4]。 ```python import torch.nn as nn class GlobalAvgPool(nn.Module): def forward(self, x): return x.mean(dim=[-2,-1]) # H and W dimensions are averaged out class GlobalMaxPool(nn.Module): def forward(self, x): return x.amax(dim=[-2,-1]) # Maximum value across spatial dimensions is taken ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

thequitesunshine007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值