Entity Segmentation是什么,和semantic Segmentation, instance Segmentation,panoptic Segmentation有什么区别?


老样子先来啰嗦一下,为什么我会关注到Entity Segmentation这个概念,是因为在读High-Quality Entity Segmentation这篇paper的时候看到的。当时比较懵,Entity Segmentation是什么,和semantic Segmentation, instance Segmentation,panoptic Segmentation有什么区别?当然因为我之前主要做目标检测,对于分割不太熟所以如果有问题可以评论,留言,欢迎指正!知识是不断学习起来的,认知也是不断修正的。
直入主题,Entity Segmentation是什么?

Entity Segmentation

我一开始直接google这个词,并没有直接找到答案,到是有篇知乎的文章在讲一篇paper,看翻译的文章真是,太糙了。还不如我自己看,然后我就得到了我想要的。
这篇文章叫,Open World Entity Segmentation (TPAMI2022) 。文章开头写的很清楚,
在这里插入图片描述
Entity Segmentation旨在不预测其语义标签的情况下分割图像中的所有视觉实体(包括object 和stuffs).

Relationship to similar tasks(semantic Segmentation, instance Segmentation,panoptic Segmentation)

和其他的分割的概念有什么区别呢?文章说的也很清楚。

在这里插入图片描述
新提出的任务侧重于“实体”的概念。它与以前的几个任务有关,但不同。与语义分割不同,ES是实例感知的。与实例分割相反,ES除了实例掩码之外还包括stuff掩码。此外,与上述分割任务和最近的全景分割不同,ES完全省略了类标签和分类功能.
简单来说,我们可以把Entity Segmentation理解为没有语义类别的全景分割。

  • 然后我们来细说一下semantic Segmentation, instance Segmentation,panoptic
    Segmentation,这几个分割任务有什么区别。

既然文章里面用thing和stuff来说明的,那我们也就用这两个概念来区分一下。

  1. semantic Segmentation
    对于语义分割来说,他研究的是在一副图像中不可数的stuff,如天空,马路。它分析每个图像像素,并根据其所代表的纹理指定一个唯一的类标签,就是说一辆车,两辆车他不在乎,因为他们的语义是一样的,统一定义是car。如图所示
    在这里插入图片描述

  2. instance Segmentation
    现在来说instance Segmentation。既然语义分割关注的是,不可数的stuff,那实例分割关注的就是可数的things。它可以检测图像中存在的每个对象或类的实例,并为其分配一个具有唯一标识符的不同掩码或边界框,表现就是他可以分清car_1,car_2,和car_3456。每个实例语义可以是一样的,但是ID是不一样的。
    在这里插入图片描述

  3. panoptic Segmentation
    全景分割就牛批了,其中场景中的每个像素都被分配了一个语义标签(由于语义分割)和一个唯一的实例标识符(由于实例分割)。简单说他是语义分割和实例分割的结合。在thing和stuff中,他两者都有但如果当像素出现重叠,他还是更关注thing,而不是stuff。

在这里插入图片描述
最后这个图就非常清晰明了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_cv_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值