文章目录
老样子先来啰嗦一下,为什么我会关注到Entity Segmentation这个概念,是因为在读High-Quality Entity Segmentation这篇paper的时候看到的。当时比较懵,Entity Segmentation是什么,和semantic Segmentation, instance Segmentation,panoptic Segmentation有什么区别?当然因为我之前主要做目标检测,对于分割不太熟所以如果有问题可以评论,留言,欢迎指正!知识是不断学习起来的,认知也是不断修正的。
直入主题,Entity Segmentation是什么?
Entity Segmentation
我一开始直接google这个词,并没有直接找到答案,到是有篇知乎的文章在讲一篇paper,看翻译的文章真是,太糙了。还不如我自己看,然后我就得到了我想要的。
这篇文章叫,Open World Entity Segmentation (TPAMI2022) 。文章开头写的很清楚,
Entity Segmentation旨在不预测其语义标签的情况下分割图像中的所有视觉实体(包括object 和stuffs).
Relationship to similar tasks(semantic Segmentation, instance Segmentation,panoptic Segmentation)
和其他的分割的概念有什么区别呢?文章说的也很清楚。
新提出的任务侧重于“实体”的概念。它与以前的几个任务有关,但不同。与语义分割不同,ES是实例感知的。与实例分割相反,ES除了实例掩码之外还包括stuff掩码。此外,与上述分割任务和最近的全景分割不同,ES完全省略了类标签和分类功能.
简单来说,我们可以把Entity Segmentation理解为没有语义类别的全景分割。
- 然后我们来细说一下semantic Segmentation, instance Segmentation,panoptic
Segmentation,这几个分割任务有什么区别。
既然文章里面用thing和stuff来说明的,那我们也就用这两个概念来区分一下。
-
semantic Segmentation
对于语义分割来说,他研究的是在一副图像中不可数的stuff,如天空,马路。它分析每个图像像素,并根据其所代表的纹理指定一个唯一的类标签,就是说一辆车,两辆车他不在乎,因为他们的语义是一样的,统一定义是car。如图所示
-
instance Segmentation
现在来说instance Segmentation。既然语义分割关注的是,不可数的stuff,那实例分割关注的就是可数的things。它可以检测图像中存在的每个对象或类的实例,并为其分配一个具有唯一标识符的不同掩码或边界框,表现就是他可以分清car_1,car_2,和car_3456。每个实例语义可以是一样的,但是ID是不一样的。
-
panoptic Segmentation
全景分割就牛批了,其中场景中的每个像素都被分配了一个语义标签(由于语义分割)和一个唯一的实例标识符(由于实例分割)。简单说他是语义分割和实例分割的结合。在thing和stuff中,他两者都有但如果当像素出现重叠,他还是更关注thing,而不是stuff。
最后这个图就非常清晰明了。