深度学习与反向传播

深度学习的基础:神经网络neural netwoork

1.感知机perceptron

(模仿神经细胞的二分类线性模型:input-树突 weight-细胞体 output-轴突

 学习过程更新权重,加权求和后与阈值比较进行判别分类

 局限:只限于线性可分,无法表示异或)

2.多层感知机MLP

 

(可含多个隐藏层的全连接模型  隐藏层的f激活函数非线性 常用ReLU、sigmoid、tanh函数)

若无激活函数 无论多少层隐藏层,输出都为输入的线性组合

注意梯度消失问题

3.卷积神经网络CNN

卷积层、池化层(压缩-去除冗余)

滑动窗口(外围填充、步长选择)

此处可参考https://www.jianshu.com/p/1ea2949c0056

4.循环神经网络RNN

充分利用序列的信息 (上一时刻的隐藏层也会影响当前时刻的隐藏层)

etc:双向循环神经网络(Bi-RNN)、长短期记忆网络(LSTM)

模型评估:

分类错误率--信息利用不充分,难以辨别模型好坏

均方误差---学习率过慢

交叉熵

优化:梯度下降--反向传播BP计算梯度

反向传播

运用链式法则,将输出当作输入反转神经网络迭代计算偏导,得到梯度

数学证明过程思路参见:https://www.bilibili.com/video/BV1Ht411g7Ef?p=14

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值