深度学习的基础:神经网络neural netwoork
1.感知机perceptron
(模仿神经细胞的二分类线性模型:input-树突 weight-细胞体 output-轴突
学习过程更新权重,加权求和后与阈值比较进行判别分类
局限:只限于线性可分,无法表示异或)
2.多层感知机MLP
(可含多个隐藏层的全连接模型 隐藏层的f激活函数非线性 常用ReLU、sigmoid、tanh函数)
若无激活函数 无论多少层隐藏层,输出都为输入的线性组合
注意梯度消失问题
3.卷积神经网络CNN
卷积层、池化层(压缩-去除冗余)
滑动窗口(外围填充、步长选择)
此处可参考https://www.jianshu.com/p/1ea2949c0056
4.循环神经网络RNN
充分利用序列的信息 (上一时刻的隐藏层也会影响当前时刻的隐藏层)
etc:双向循环神经网络(Bi-RNN)、长短期记忆网络(LSTM)
模型评估:
分类错误率--信息利用不充分,难以辨别模型好坏
均方误差---学习率过慢
交叉熵
优化:梯度下降--反向传播BP计算梯度
反向传播
运用链式法则,将输出当作输入反转神经网络迭代计算偏导,得到梯度