【模型】【课程笔记】04 金融时间序列

本文为课程《金融风险管理》第4章学习笔记,用于知识点总结和复习,对应教材《Quantitative Risk Management(2015)》,标号为原版书公式以便查阅。

往期回顾:

博文内容
【模型】【课程笔记】01+02+03 金融风险管理导论VaR、ES、风险测度性质等
【模型】【课程笔记】04 金融时间序列ARMA、GARCH 等

一、框架

在这里插入图片描述

二、重要公式及推导

第四章 金融时间序列

在这里插入图片描述

4.1 Fundamentals of Time Series Analysis——ARMA
4.1.1 Basic Definitions

1、离散随机过程( a discrete-time stochastic process): ( X t ) t ∈ z (X_t)_{t∈z} (Xt)tz
2、矩(moment):均值函数、自协方差函数
在这里插入图片描述
3、平稳性
宽平稳/协方差平稳(covariance stationarity):只与相隔距离有关
在这里插入图片描述
4、宽平稳的自相关——协方差仅取决于阶数(lag)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
5、白噪声:无序列相关性
严格白噪声(SWN):要求独立同分布(iid),可以写出分布
在这里插入图片描述
6、鞅差序列(Martingale difference)
E ( M t ∣ M t − 1 , . . . ) = E ( M t ∣ M t − 1 ) E(M_t|M_{t-1},...)=E(M_t|M_{t-1}) E(MtMt1,...)=E(MtMt1):期望只依赖于前一期。
①时间序列: ( X s ) s ≤ t (X_s)_{s≤t} (Xs)st
②σ-代数 F t F_t Ft:代表到t时刻的信息
在这里插入图片描述
③鞅差定义:
鞅差序列与白噪声序列:鞅差序列要求均值为0(证明:条件平滑公式),协方差为0(证明:无论t和s谁大谁小,协方差=0),但不要求同方差(即方差可变),如果方差一致即为白噪声。
注:要求Xt是 F t F_t Ft可测的。
在这里插入图片描述

4.1.2 ARMA process

1、定义: ( ε t ) t ∈ Z (ε_t)_{t∈Z} (εt)tZ表示白噪声,用 ( Z t ) t ∈ Z (Z_t)_{t∈Z} (Zt)tZ表示严格的白噪声
在这里插入图片描述
总结:
在这里插入图片描述
(1)因果性(Casual ARMA process)——MA(∞),根在单位圆外
①定义:(4.2)MA(∞)、(4.3)绝对可加性(absolute summability condition):期望有限——平稳性
注解:写成L的级数的形式(参考预备知识③),因式分解写成 ( 1 − a 1 L ) . . . ( 1 − a p L ) (1-a_1L)...(1-a_pL) 1a1L...1apL
重点性质: X t X_t Xt只和 ε t ε_t εt及前面的有关,所以 c o v ( X t , ε t + k = 0 ) , k > 0 cov(X_t,ε_{t+k}=0),k>0 cov(Xt,εt+k=0),k>0
在这里插入图片描述
②计算(参考预备知识③④)
在这里插入图片描述
(2)可逆性(Invertibility)——根在单位圆外
①ARMA(1,1):用 X t X_t Xt去构建 ε t ε_t εt,方法: ε t − 1 ε_{t-1} εt1用迭代的方式表示,最终得到式(4.10)
②作用:计算残差
在这里插入图片描述
3、⭐求解条件均值(Conditional mean)
在这里插入图片描述
4、ARIMA模型——差分后平稳的序列
(1)定义
在这里插入图片描述

4.1.3 Analysis in the Time Domain(在时域上分析)

1、相关图(correlogram)
自相关系数、偏自相关系数

2、满足因果性(平稳性)和严格白噪声( ε t ε_t εt换成 Z t Z_t Zt),依分布收敛
在这里插入图片描述
特殊地,如果序列是白噪声,协方差阵退化为单位阵。
目的是:构造95%置信区间,进行假设检验,判断一个序列是不是白噪声。即前面ACF曲线的两条线,如果5%落在两条线之外,拒绝原假设,不是白噪声。
在这里插入图片描述
3、混成检验(Portmanteau test)
①Box-Pierce test:n倍(h个自相关系数的平方求和),服从自由度为h的卡方分布。
缺点:等权重
在这里插入图片描述
②Ljung-Box Test
j↑,权重越大,即滞后期越长权重越大(说明影响很大)。
n→∞, Q L B Q_{LB} QLB Q B P Q_{BP} QBP的分布一样,服从自由度为h的卡方分布。
拒绝域: Q L B Q_{LB} QLB> χ α ( h ) χ_α(h) χα(h)
在这里插入图片描述

4.1.4 statistical analysis of time series

1、预处理:画图(观察是否平稳,比如有季节趋势等)、单位根检验
2、去除趋势和季节性(seasonalities)
3、拟合与优化模型(定阶;AIC、BIC)

4、残差分析
不可观测的”信息“(unobserved innovation)->用可观测的值代替
初值选择:进而估计 u 1 ^ \widehat{u_1} u1 再估计 ε 1 ^ \widehat{ε_1} ε1 ,然后估计 u 2 ^ \widehat{u_2} u2 ,…,以此估计出残差序列 ε ^ \widehat{ε} ε
在这里插入图片描述

4.1.5 prediction

两种方法:Box-Jenkins approach、指数平滑方法(exponential smoothing)——指数加权滑动平均(EWMA:预测波动率),易推广到GARCH模型

1、模型法(4.11:ARMA模型):
u t u_t ut可测
方法:用 X t X_t Xt前面的n个数据预测 X t + 1 X_{t+1} Xt+1,假设服从ARMA模型。
预测: X t + h X_{t+h} Xt+h,用条件期望 E ( X t + h ∣ F t ) E(X_{t+h}|F_t) E(Xt+hFt),依据是最小化均方误差,期望是最优的。
在这里插入图片描述
Example 4.15 预测ARMA(1,1)
运用鞅差序列性质,进行一步预测和两步预测,并不断迭代。
在这里插入图片描述
在这里插入图片描述
2、非模型法(指数平滑方法)
(1)方法适用范围:时间序列、有趋势但无季节性(seasonal component),不适合频繁变号(frequently changing signs)的情况,适用于波动率预测。
(2)公式:
经济学解释:实际值和前一期预测值的加权平均
(3)λ的选择:
主观选择(0.1-0.3),交叉验证:最小化均方误差,选择λ
m i n ∑ i = 1 m ( P t + i Y t + 1 + i − Y t + 1 + i ) 2 min\sum_{i=1}^m (P_{t+i}Y_{t+1+i}-Y_{t+1+i})^2 mini=1m(Pt+iYt+1+iYt+1+i)2
在这里插入图片描述

4.2 GARCH Models for Changing Volatility
4.2.1 ARCH process(条件异方差)

1、定义:
X t X_t Xt分成两个部分:标准差序列和严格白噪声,并对标准差序列进行识别建模,假设和 X t − i X_{t-i} Xti滞后项的平方呈线性关系。
在这里插入图片描述
2、ARCH 满足鞅差序列性质
σ t σ_t σt是可测(measurable)的, ( σ t ) t ∈ z (σ_t)_{t∈z} (σt)tz的过程是可料(previsible)的,所以可以放在括号前面。
在这里插入图片描述
在这里插入图片描述
3、如果 ∣ X t − 1 ∣ , . . . , ∣ X t − p ∣ |X_{t-1}|,...,|X_{t-p}| Xt1,...,Xtp比较大,从而 V a r ( X t ) Var(X_t) Var(Xt)大,可以用来描述波动率聚集的现象。

4.2.2 GARCH process

1、GARCH
(1)定义:
标准差序列不仅依赖于 X t − i X_{t-i} Xti滞后项的平方,还和自身的前一期取值有关。
在这里插入图片描述
(2)GARCH(1,1):可以写成ARMA(∞)的形式(用 X t − i 2 X_{t-i}^2 Xti2表示)
表现出持续(persistent)的高波动性(high volatility)。
①平稳性:α+β<1
在这里插入图片描述
在这里插入图片描述
②四阶矩(fourth moments and kurtosis):
κ z > 1 κ_z>1 κz>1大于常见的高斯分布和t分布
在这里插入图片描述
2、IGARCH(Integrated GARCH——单整)
在这里插入图片描述

4.2.3 Simple Extensions of GARCH Model

1、ARMA-GARCH:用于边际分布
(1)结合ARMA(4.11)、GARCH(4.24),写出ARMA-GARCH模型。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(2)由于ARMA模型是可逆的,保证了 μ t μ_t μt F t − 1 F_{t-1} Ft1-measure(可测的),并且 σ t σ_t σt依赖于无限历史(infinite history) ( X s − μ s ) s ≤ t − 1 (X_s-μ_s)_{s≤t-1} (Xsμs)st1,ARMA模型的可逆性保证了 σ t σ_t σt F t − 1 F_{t-1} Ft1-measure。
条件均值,条件方差:
在这里插入图片描述
2、GARCH with leverage:具有杠杆性的GARCH
波动率的不对称效应:坏消息的冲击远大于好消息的冲击(δ的期望为负)。
杠杆:资本负债率(debt-to-equity ratio)
注解:红线代表边际效应。
在这里插入图片描述
3、Threshold GARCH:门限GARCH模型——将线性时间序列变成非线性的一种手段,不仅来自于一个模型
X t − 1 < 0 X_{t-1}<0 Xt1<0取1,代表坏消息的冲击, X t − 1 > 0 X_{t-1}>0 Xt1>0取0
此处门限选择为0,也可以不是0,或者多个门限。
在这里插入图片描述
另一种表示的解释:对自回归项也有额外的冲击
在这里插入图片描述

4.2.4 Fitting GARCH Models to Data(基于极大似然进行参数估计)

1、方法
已知:n+1个数据
联合密度函数表示成条件密度函数乘积的形式(有公式可证⭐)。
将联合密度函数看成是参数的函数,叫做似然函数。
在这里插入图片描述
2、对于ARCH(1)过程,符合一阶马尔可夫性质(first-order Markovian),可以看作是只依赖于前面的一项 X t − 1 X_{t-1} Xt1
在这里插入图片描述
证明过程:
X t = σ t ⋅ Z t X_t=σ_t·Z_t Xt=σtZt
F ( x ) = P ( X ≤ x ) = P ( z ≤ x / σ ) = F z ( x / σ ) F(x)=P(X≤x)=P(z≤x/σ)=F_z(x/σ) F(x)=P(Xx)=P(zx/σ)=Fz(x/σ)
两边求导即: f ( x ) = f z ( x / σ ) ⋅ ( 1 / σ ) f(x)=f_z(x/σ)·(1/σ) f(x)=fz(x/σ)(1/σ)

3、条件极大似然—— f X 0 f_{X_0} fX0没有显式表达式,方法:给定 X 0 X_0 X0
在这里插入图片描述
对于ARCH(1) σ t σ_t σt不仅依赖于 X t − 1 X_{t-1} Xt1,也依赖于 X t − p X_{t-p} Xtp,即依赖于前面p阶。 σ t σ_t σt σ t − 1 σ_{t-1} σt1“各自算各自,互相不打交道”。
在这里插入图片描述
对于GARCH(1,1) σ t σ_t σt是迭代的,必须依赖于 σ t − 1 σ_{t-1} σt1
所以条件密度依赖于 σ t σ_t σt σ t σ_t σt依赖于前面所有的(不仅是p个)。
在这里插入图片描述
σ 0 2 σ_0^2 σ02不可观测,所以选择初值,一般是样本方差或者是0。通过公式不断向前迭代,算出 σ 1 2 σ_1^2 σ12 σ 2 2 σ_2^2 σ22…(均可以表示为三个参数 α 、 α 1 、 β 1 α、α_1、β_1 αα1β1的形式),代入似然函数中替换掉 σ t σ_t σt,由于Xt已知,可以最大化似然函数L,得到参数估计。
在这里插入图片描述
对于ARMA-GARCH模型: σ t σ_t σt μ t μ_t μt表达式写出来代入
在这里插入图片描述
4、对数极大似然(log-likelihood):最大化表达式(有代码)或梯度为0
左边是得分向量(score vector),用牛顿迭代法(Newton-Raphson)方法。
在这里插入图片描述
5、拟极大似然法——quasi-maximum likelihood (QML)
(1)方法适用场景: σ t σ_t σt正确,但 Z t Z_t Zt不服从N(0,1),仍用正态假定,进行拟极大似然估计。
(2)MLE性质:中心极限定理,相合性(consistent:均值为0),渐进正态性(asymptotically normal:服从正态分布)
收敛速度: 1 / n 1/\sqrt{n} 1/n
Fisher information matrix:外积形式(列向量x行向量),乘完是一个矩阵,再加上期望。(补充:内积乘完是个矩阵)
或者是等于Hessian矩阵。
在这里插入图片描述
对数似然的导数(the derivatives of the log-likelihood)一般用一阶或二阶差分(first- and second-order differences)估计,代入 θ ^ \widehat{θ} θ
在这里插入图片描述
(3)应用
模型正确估计:两种估计均可
模型不正确估计:“三明治”方法,相等的话为任一一个,不相等的话两个信息都用
在这里插入图片描述
拟极大似然(QML)——non-Gaussian innovations,必须用“三明治”的方法去估计。从而进行 θ j θ_j θj的区间估计,或者构造统计量进行参数的假设检验,如: H 0 : β 3 = 0 H_0:β_3=0 H0β3=0?,杠杆效应的 δ = 0 δ=0 δ=0
在这里插入图片描述
6、标准化残差 Z t Z_t Zt和非标准化的残差 ε t ε_t εt(框图)
X t − μ t = ε t = σ t Z t X_t−μ_t =ε_t = σ_tZ_t Xtμt=εt=σtZt
(1)定义
非标准化残差 ε t ε_t εt:鞅差序列
标准化残差 Z t Z_t Zt:白噪声(4.40),用 ρ ^ \widehat{ρ} ρ 检验白噪声(WN),Ljung–Box test。
在这里插入图片描述
(2)两阶段分析(two-stage approach)
①定义:先用拟极大似然方法(QML)动态(dynamics)估计,第一阶段也称变白噪声(pre-whitening),然后用模型的残差识别建模信息分布(innovation distribution),在第二阶段可能会考虑使用重尾模型(heavier-tailed model),描述分布中的不对称性(asymmetry)。
②缺点:时间序列模型的建模误差(modelling error)影响到第二阶段拟合分布(distributional fitting),而总体误差很难定量。这要求建模更加透明化,即将对波动性建模(volatility modelling)和过程中的冲击(modelling shocks that drive the process)分开。这在更高维度风险因素建模中,可能是个实用的方法。
例子:Example 4.24 分析图表

4.2.5 Volatility forecasting and risk measure estimation

1、模型
已知: X t X_t Xt宽平稳时间序列, μ t 、 σ t μ_t、σ_t μtσt F t − 1 F_{t-1} Ft1可测, Z t Z_t Zt白噪声。ARMA-GARCH模型(4.41)
目的:预测 σ t + h σ_{t+h} σt+h(h步之后的数据)
在这里插入图片描述
在这里插入图片描述
2、GARCH-based volatility prediction
对于GARCH(1,1):
μ t = 0 μ_t=0 μt=0
E ( X t + h ∣ F t ) = 0 E(X_{t+h}|F_t)=0 E(Xt+hFt)=0(鞅差序列的性质)
在这里插入图片描述
用迭代的方法,可以计算出 σ ^ t + 1 2 \widehat{σ}_{t+1}^2 σ t+12 σ ^ t + 2 2 \widehat{σ}_{t+2}^2 σ t+22…,归纳法(详细过程见笔记)
在这里插入图片描述
h→∞,趋近于无条件方差
在这里插入图片描述
3、混合模型预测
对于ARMA(1,1)—GARCH(1,1):
在这里插入图片描述
4、Exponential smoothing for volatility
估计 μ t μ_t μt:插入方法——滑动平均、ARMA、滑窗
预测 X t + 1 X_{t+1} Xt+1等于实际发生值和预测值的加权平均
在这里插入图片描述
估计方差(EWMA):
在这里插入图片描述
5、Estimates of VaR and expected shortfall(估计VaR和ES)
思路:估计VaR和ES,即估计条件分布 F X t + 1 ∣ F t F_{X_{t+1}}|F_t FXt+1Ft,用t时刻信息去估计t+1时刻。
算风险:估计 μ t + 1 μ_{t+1} μt+1 σ t + 1 σ_{t+1} σt+1
Z的分布也需要去估计(极值理论),除非假定正态或者t分布(需要估计自由度)。严格白噪声就可以用单一分布去刻画。
在这里插入图片描述

  • 7
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值