3.4 分层抽样法

本文深入探讨了分层抽样法,这是一种在概率论和统计学中常用的数据收集技术。通过将总体分成不同的层次或组别,然后从每个层次中独立抽取样本,以提高样本的代表性。这种方法在处理大规模或异质性总体时特别有效,确保了最终样本能够反映总体的各种特征。分层抽样法涉及到的概率计算和算法设计是理解和应用此技术的关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述在这里插入图片描述

> rm(list = ls())
> set.seed(1)
> n <- 1000
> U <- runif(n)
> h <- function(U){exp(-U)/(1+U^2)}
> theta.e <- mean(h(U))  #积分估计值
> sigma2.e <- sum((h(U)-theta.e)^2)/(n*(n-1))  #积分估计量方差
> theta.e
[1] 0.5251122
> sigma2.e
[1] 5.929583e-05

采用分层等比例抽样方法,模拟量n = 1000,分四层,即k = 4,按照等比例方式,传媒曾抽取样本250个,每层的概率Pi = 0.25.这意味着分层变量Y的分布为:

在这里插入图片描述

> k <- 4  #层数
> p <- 1/k  #每层概率
> ni <- n/k  #每层抽取样本量
> theta.i <- c()  #每层样本均值
> sigma2.i <- c()  #每层样本方差
> for(j in 1:k){
+   U <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值