外泌体相关基因肝癌临床模型预测——2-3分纯生信文章复现——4.预后相关外泌体基因确定单因素cox回归(2)

 

内容如下:

1.外泌体和肝癌TCGA数据下载

2.数据格式整理

3.差异表达基因筛选

4.预后相关外泌体基因确定

5.拷贝数变异及突变图谱

6.外泌体基因功能注释

7.LASSO回归筛选外泌体预后模型

8.预后模型验证

9.预后模型鲁棒性分析

10.独立预后因素分析及与临床的相关性分析

11.列线图,ROC曲线,校准曲线,DCA曲线

12.外部数据集验证

13.外泌体模型与免疫的关系

14.外泌体模型与单细胞测序

########################### 4.预后相关外泌体基因确定 ############################

下面进行批量单因素cox回归分析。

使用上一节的数据,代码如下:


setwd("C:\\Users\\ASUS\\Desktop\\自噬")
## install.package("pheatmap")
dir()
data <- read.csv("LIHC_clinical_mRNA_expression_data.csv",header = T,sep = ",")
data[1:5,1:5]

rownames(data) <- data$sampleID
data <- data[,-1]
data[1:5,1:5]
pFilter=1

names(data)[1:2] <- c("futime","fustat")
head(data)
dim(data)
data[1:5,1:5]
rt <- data
anyNA(data)
data <- na.omit(data)
outTab=data.frame()
sigGenes=c("futime","fustat")
dim(data)
head(data)
library(survival)
for(i in colnames(rt[,3:ncol(rt)])){
  cox <- coxph(Surv(futime, fustat) ~ rt[,i], data = rt)
  coxSummary = summary(cox)
  coxP=coxSummary$coefficients[,"Pr(>|z|)"]
  if(coxP<pFilter){
    sigGenes=c(sigGenes,i)
    outTab=rbind(outTab,
                 cbind(id=i,
                       HR=coxSummary$conf.int[,"exp(coef)"],
                       HR.95L=coxSummary$conf.int[,"lower .95"],
                       HR.95H=coxSummary$conf.int[,"upper .95"],
                       pvalue=coxSummary$coefficients[,"Pr(>|z|)"])
    )
  }
}

outTab
write.table(outTab,file="uniCox_LTPM.txt",sep="\t",row.names=F,quote=F)
uniSigExp=rt[,sigGenes]
uniSigExp=cbind(id=row.names(uniSigExp),uniSigExp)
write.table(uniSigExp,file="uniSigExp_LTPM.txt",sep="\t",row.names=F,quote=F)

从数据中可以看到,和预后有关的基因有35个。

下一节绘制森林图。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

楷然教你学生信

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值