R语言与临床模型预测——LASSO回归,单因素多因素cox,差异表达分析,Venn图,森林图,列线图,矫正曲线,ROC全套代码及解析——第九部分 lasso回归排除具有共线性的基因 本专栏可免费答疑

本文介绍了使用R语言进行LASSO Cox回归分析,以排除具有共线性的基因并构建预后模型。内容包括数据准备、差异表达基因筛选、LASSO回归、风险评分构建、ROC曲线分析以及生存曲线绘制,旨在预测临床结局。
摘要由CSDN通过智能技术生成

1.下载数据

2. 匹配基因

3. 基因去重复

4.匹配临床数据

5.批量cox回归分析

6.差异表达基因筛选

7.取交集,选出预后相关的差异表达基因

8.森林图绘制

9.lasso回归进一步排除具有共线性的基因

10.验证集验证,数据合并验证

11.多因素cox回归建模

12.列线图

13.矫正曲线

14.ROC曲线分析

上次筛选了预后相关差异基因,下面我们开始对这些基因进行lasso-cox回归:

下面数据准备:

这是之前做批量cox回归分析时生成的文件,内容如下:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

楷然教你学生信

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值