R语言:ca和MASS包实现对应分析 Correspondence Analysis

对应分析是一种揭示分类变量间联系的低维图形表示法,源自法国,广泛应用于数据可视化。R语言的ca包和MASS包提供对应分析功能,通过案例数据演示如何使用ca和pca()函数进行分析。尽管对应分析不能直接进行假设检验,但它能直观展示变量类别间的关联,常用于市场调查和社会科学数据的分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对应分析
  • 对应分析(correspondence analysis)是用于寻求列联表的行和列之间联系的一种低维图形表示法,它可以从直觉上揭示出同一分类变量的各个类别之间的差异,以及不同分类变量各个类别之间的对应关系。
  • 对应分析是由法国人Benzecri1970年提出的,起初在法国和日本最为流行,然后引入美国。
  • 在对应分析中,列联表的每一行对应(通常是二维)图中的一点,每一列也对应同一图中的一点。本质上,这些点都是列联表的各行各列向一个二维欧式空间的投影,这种投影最大限度地保持了各行(或各列)之间的关系。
R语言求解
案例

smoke dataset:这个数据集来自Greenacre (1984 ),被应用于多个统计软件作为对应分析的说明案例数据。它的内容是一个5行(阶层)4列(吸烟习惯)的列联表,给出了一个虚构的公司内各阶层吸烟习惯的频数。 对它作对应分析。

ca包
### 多元统计分析的R语言示例代码 以下是几个常见的多元统计分析方法及其对应的R语言实现代码: #### 1. 对应分析Correspondence Analysis对应分析是一种用于探索两个或多个分类变量之间关系的方法。可以使用`MASS`中的`corresp`函数来完成。 ```r # 加载必要 library(MASS) # 创建模拟数据 data <- matrix(c(20, 10, 15, 25), nrow = 2, byrow = TRUE, dimnames = list(Category1 = c("A", "B"), Category2 = c("X", "Y"))) # 执行对应分析 ca_result <- corresp(data, nf = 2) # 输出结果 print(ca_result) biplot(ca_result) ``` 上述代码展示了如何通过`corresp`函数进行简单对应分析并绘制双标图[^1]。 --- #### 2. 散点矩阵图(Scatter Matrix Plot) 散点矩阵图可以帮助我们直观地观察多维数据之间的关系,通常使用`pairs()`函数。 ```r # 使用内置鸢尾花数据集作为例子 data(iris) # 绘制散点矩阵图 pairs(iris[,1:4], main="Iris Data Scatter Matrix") ``` 此代码片段利用了`iris`数据集中前四列数值型特征生成了一个散布矩阵图[^2]。 --- #### 3. 典型相关分析Canonical Correlation Analysis) 典型相关分析旨在找出两组变量间的线性组合的最大相关系数。这里展示的是基于`psych`中`cancor`函数的应用实例。 ```r # 安装并加载所需库 install.packages("psych") library(psych) # 构造虚拟数据框 set.seed(123) group1 <- as.data.frame(matrix(rnorm(100 * 3), ncol = 3)) group2 <- as.data.frame(matrix(rnorm(100 * 4), ncol = 4)) # 进行典型相关计算 cca_results <- cancor(group1, group2) # 显示主要输出项 summary(cca_results) ``` 这段脚本说明了怎样构建假想的数据集合实施典型的关联度量过程[^3]。 --- #### 4. 因子分析(Factor Analysis) 因子分析试图揭示隐藏在观测到的众多指标背后的潜在因素。下面提供了一种方式去执行它。 ```r source("path_to_your_script/msaR.R") # 替换路径至实际位置 # 假设已定义好fa_data对象 fit <- fa(fa_data, factors=3, rotate="varimax") # 查看提取出来的公因数详情 print(fit$loadings) ``` 注意这里的`msaR.R`文件含了特定于项目的初始化设置;需调整具体调用地址匹配本地环境配置[^4]。 --- #### 5. 聚类分析(Cluster Analysis) 聚类技术把相似个体归入同一类别以便更好地理解群体特性差异。以下分别介绍了层次聚类与K均值算法两种形式的操作指南。 ##### 层次聚类法 ```r library(xlsx) # 导入外部Excel文档里的资料表单 data <- read.xlsx("your_file_path_here.xlsx","SheetName", row.names=TRUE) # 可视化原始分布状况 plot(data,gap=0,type='l') # 计算距离矩阵 dist_matrix <- dist(scale(data), method = "euclidean") # 应用Ward.D链接标准建立树状图模型 hc <- hclust(dist_matrix, method = "ward.D") # 制作分层结构图形表示 plot(hc,hang=-1,cex=.8) rect.hclust(hc,k=3,border="red") ``` 上面的例子演示了从导入excel源材料直至呈现最终切割后的群组划分全过程[^5]。 ##### K-Means Clustering ```r kmeans_model <- kmeans(data, centers = 3, iter.max = 100, nstart = 25) table(kmeans_model$cluster) fviz_cluster(kmeans_model, data=data) ``` 该部分补充了另一种非监督学习策略即快速聚类的具体实践手法同样适用于前述提到过的消费水平统计数据案例场景之中。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cachel wood

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值