对应分析(correspondence analysis, CA)是在因子分析的基础上发展起来的方法,通过对原始数据采用适当的标度方法,把R型因子分析(对变量)和Q型因子分析(对样品)结合起来,同时得到两方面的结果。对应分析是一种维度缩减方法,特别的,可以在同一因子平面上表现变量和样品,从而直观的揭示所研究的变量和样品之间的内在联系。
因子分析最早由法国学者Benzecri (1973)提出,现已有广泛的应用,特别在社会科学研究,市场分析等领域,对应分析已经成为一种常用的数据分析方法。[1]
ca分析
用的数据是smoke
none light medium heavy
SM 4 2 3 2
JM 4 3 7 4
SE 25 10 12 4
JE 18 24 33 13
SC 10 6 7 2
行是体重和列是人名
library(ca)
data("smoke")
ca(smoke)
即可查看ca分析的结果
names(ca(smoke)) 抽烟者姓名,即列名
summary(ca(smoke))
plot(ca(smoke))基本图形样式[2],plot中的map参数默认是symmetric即对称分布;具体格式可参考文章2
这里还是说一下吧
plot(x, dim = c(1,2), map = "symmetric", what = c("all", "all"),
mass = c(FALSE, FALSE), contrib = c("none", "none"),
col = c("#0000FF", "#FF0000"), pch = c(16, 1, 17, 24),
labels = c(2, 2), arrows = c(FALSE, FALSE), ...)
可选的图形参数
"symmetric" (default) 对称分布
"rowprincipal" 行数据为主
"colprincipal" 列数据为主
"symbiplot" 主成分分析的biplot绘图
"rowgab"
"colgab"
"rowgreen"行作为主坐标列作为标准坐标的情形