相应分析的R包ca和mca,cca,RDA的R实现整理

 对应分析(correspondence analysis, CA)是在因子分析的基础上发展起来的方法,通过对原始数据采用适当的标度方法,把R型因子分析(对变量)和Q型因子分析(对样品)结合起来,同时得到两方面的结果。对应分析是一种维度缩减方法,特别的,可以在同一因子平面上表现变量和样品,从而直观的揭示所研究的变量和样品之间的内在联系。
    因子分析最早由法国学者Benzecri (1973)提出,现已有广泛的应用,特别在社会科学研究,市场分析等领域,对应分析已经成为一种常用的数据分析方法。[1]

ca分析

用的数据是smoke

 none light medium heavy
SM    4     2      3     2
JM    4     3      7     4
SE   25    10     12     4
JE   18    24     33    13
SC   10     6      7     2

行是体重和列是人名

library(ca)

data("smoke")

ca(smoke)

即可查看ca分析的结果

names(ca(smoke)) 抽烟者姓名,即列名

summary(ca(smoke))

plot(ca(smoke))基本图形样式[2],plot中的map参数默认是symmetric即对称分布;具体格式可参考文章2

这里还是说一下吧

plot(x, dim = c(1,2), map = "symmetric", what = c("all", "all"),
mass = c(FALSE, FALSE), contrib = c("none", "none"),
col = c("#0000FF", "#FF0000"), pch = c(16, 1, 17, 24),
labels = c(2, 2), arrows = c(FALSE, FALSE), ...)
 
可选的图形参数
"symmetric" (default) 对称分布
"rowprincipal" 行数据为主
"colprincipal" 列数据为主
"symbiplot" 主成分分析的biplot绘图
"rowgab"
"colgab"
"rowgreen"行作为主坐标列作为标准坐标的情形

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值