关于极限不存在的一些想法

1.题目: lim ⁡ x → ∞ x 2 + 1 x \lim\limits_{x \to \infty} \frac{\sqrt{x^{2}+1} }{x} xlimxx2+1
一般人的想法是这样的
原 式 = lim ⁡ x → ∞ x 2 + 1 x 2 = lim ⁡ x → ∞ 1 + 1 x 2 = 1 原式=\lim\limits_{x \to \infty} \sqrt{\frac{x^{2}+1}{x^2} } =\lim\limits_{x \to \infty}\sqrt{1+\frac{1}{x^2} }=1 =xlimx2x2+1 =xlim1+x21 =1
不过这样忽视了一个问题,那就是 x 2 ≠ x \sqrt{x^2}\ne x x2 =x。正确的是 x 2 = ∣ x ∣ \sqrt{x^2}=|x| x2 =x,但是上面的做法默认是:
lim ⁡ x → ∞ x 2 + 1 x = lim ⁡ x → ∞ x 2 + 1 x 2 \lim\limits_{x \to \infty} \frac{\sqrt{x^{2}+1} }{x}=\lim\limits_{x \to \infty} \frac{\sqrt{{x^{2}+1}}}{\sqrt{x^2} } xlimxx2+1 =xlimx2 x2+1
所以这种做法从第一步就开始出现错误了,正确的做法是
原 式 = lim ⁡ x → ∞ ∣ x ∣ 1 + 1 x 2 x = { lim ⁡ x → − ∞ − x 1 + 1 x 2 x = lim ⁡ x → − ∞ − 1 + 1 x 2 = − 1 lim ⁡ x → + ∞ x 1 + 1 x 2 x = lim ⁡ x → + ∞ 1 + 1 x 2 = 1 原式=\lim\limits_{x \to \infty} \frac{|x|\sqrt{1+\frac{1}{x^2} } }{x}= \begin{cases} \lim\limits_{x \to -\infty} \frac{-x\sqrt{1+\frac{1}{x^2} } }{x}=\lim\limits_{x \to -\infty}-\sqrt{1+\frac{1}{x^2}}=-1\\\lim\limits_{x \to +\infty} \frac{x\sqrt{1+\frac{1}{x^2} } }{x}=\lim\limits_{x \to +\infty}\sqrt{1+\frac{1}{x^2}}=1 \end{cases} =xlimxx1+x21 =xlimxx1+x21 =xlim1+x21 =1x+limxx1+x21 =x+lim1+x21 =1
值得注意的是:
x 2 = ∣ x ∣ \sqrt{x^2}=|x| x2 =x
x 与 x 2 的 关 系 ⇒ { x ≥ 0 , x = ∣ x ∣ = x 2 x < 0 , x = − ∣ x ∣ = − x 2 x与\sqrt{x^2}的关系\Rightarrow \begin{cases} x\ge 0,x=|x|=\sqrt{x^2} \\x<0,x=-|x|=- \sqrt{x^2} \end{cases} xx2 {x0,x=x=x2 x<0,x=x=x2
再来看一些类似的题目:
(1)
lim ⁡ x → ∞ 4 x 2 + x − 1 + x + 1 x 2 + s i n x \lim\limits_{x \to \infty}\frac{\sqrt{4x^2+x-1}+x+1 }{\sqrt{x^2+sinx} } xlimx2+sinx 4x2+x1 +x+1
解: 原 式 = lim ⁡ x → ∞ ∣ x ∣ 4 + 1 x − 1 x 2 + x ( 1 + 1 x ) ∣ x ∣ 1 + s i n x x 2 原式=\lim\limits_{x \to \infty}\frac{|x|\sqrt{4+\frac{1}{x} -\frac{1}{x^2}}+x(1+\frac{1}{x} ) }{|x|\sqrt{1+\frac{sinx}{x^2} } } =xlimx1+x2sinx x4+x1x21 +x(1+x1)
当 x 趋 向 负 无 穷 时 : 当x趋向负无穷时: x
原 式 = lim ⁡ x → − ∞ − x 4 + 1 x − 1 x 2 + x ( 1 + 1 x ) − x 1 + s i n x x 2 = lim ⁡ x → − ∞ − 4 + 1 x − 1 x 2 + ( 1 + 1 x ) − 1 + s i n x x 2 = lim ⁡ x → − ∞ − 4 + 1 x − 1 x 2 + lim ⁡ x → − ∞ ( 1 + 1 x ) lim ⁡ x → − ∞ − 1 + s i n x x 2 = − 2 + 1 − 1 = 1 \begin{aligned} &原式=\lim\limits_{x \to -\infty}\frac{-x\sqrt{4+\frac{1}{x} -\frac{1}{x^2}}+x(1+\frac{1}{x} ) }{-x\sqrt{1+\frac{sinx}{x^2} } }\\ &= \lim\limits_{x \to -\infty}\frac{-\sqrt{4+\frac{1}{x} -\frac{1}{x^2}}+(1+\frac{1}{x} ) }{-\sqrt{1+\frac{sinx}{x^2} } }\\ &=\frac{\lim\limits_{x \to -\infty}-\sqrt{4+\frac{1}{x} -\frac{1}{x^2}}+ \lim\limits_{x \to -\infty}(1+\frac{1}{x} )}{\lim\limits_{x \to -\infty}-\sqrt{1+\frac{sinx}{x^2} } }\\ &=\frac{-2+1}{-1}\\ &=1\\ \end{aligned} =xlimx1+x2sinx x4+x1x21 +x(1+x1)=xlim1+x2sinx 4+x1x21 +(1+x1)=xlim1+x2sinx xlim4+x1x21 +xlim(1+x1)=12+1=1
当 x 趋 向 正 无 穷 时 : 当x趋向正无穷时: x
原 式 = lim ⁡ x → + ∞ x 4 + 1 x − 1 x 2 + x ( 1 + 1 x ) x 1 + s i n x x 2 = lim ⁡ x → + ∞ 4 + 1 x − 1 x 2 + ( 1 + 1 x ) 1 + s i n x x 2 = lim ⁡ x → + ∞ 4 + 1 x − 1 x 2 + lim ⁡ x → + ∞ ( 1 + 1 x ) lim ⁡ x → + ∞ 1 + s i n x x 2 = 2 + 1 1 = 3 \begin{aligned} &原式=\lim\limits_{x \to +\infty}\frac{x\sqrt{4+\frac{1}{x} -\frac{1}{x^2}}+x(1+\frac{1}{x} ) }{x\sqrt{1+\frac{sinx}{x^2} } }\\ &= \lim\limits_{x \to +\infty}\frac{\sqrt{4+\frac{1}{x} -\frac{1}{x^2}}+(1+\frac{1}{x} ) }{\sqrt{1+\frac{sinx}{x^2} } }\\ &=\frac{\lim\limits_{x \to +\infty}\sqrt{4+\frac{1}{x} -\frac{1}{x^2}}+ \lim\limits_{x \to +\infty}(1+\frac{1}{x} )}{\lim\limits_{x \to +\infty}\sqrt{1+\frac{sinx}{x^2} } }\\ &=\frac{2+1}{1}\\ &=3\\ \end{aligned} =x+limx1+x2sinx x4+x1x21 +x(1+x1)=x+lim1+x2sinx 4+x1x21 +(1+x1)=x+lim1+x2sinx x+lim4+x1x21 +x+lim(1+x1)=12+1=3
由 于 lim ⁡ x → + ∞ f ( x ) ≠ lim ⁡ x → + ∞ f ( x ) 。 故 lim ⁡ x → ∞ f ( x ) 极 限 不 存 在 由于\lim\limits_{x \to +\infty}f(x)\ne\lim\limits_{x \to +\infty}f(x) 。故\lim\limits_{x \to \infty}f(x)极限不存在 x+limf(x)=x+limf(x)xlimf(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值