MiniMax:注意力机制拓展LLM上下文窗口

在这里插入图片描述

📖标题:MiniMax-01: Scaling Foundation Models with Lightning Attention
🌐来源:arXiv, 2501.08313

🌟摘要

🔸我们介绍MiniMax-01系列,包括MiniMax-Text-01和MiniMax-VL-01,它们与顶级型号相当,同时在处理较长上下文方面提供了卓越的功能。核心在于闪电般的关注及其高效的扩展。为了最大限度地提高计算能力,我们将其与混合专家(MoE)集成,创建了一个包含32名专家和4560亿个总参数的模型,其中每个令牌激活了459亿个参数。我们为MoE和闪电注意力开发了一种优化的并行策略和高效的计算通信重叠技术。这种方法使我们能够在跨越数百万个令牌的上下文中对具有数千亿个参数的模型进行高效的训练和推理。
🔸MiniMax-Text-01的上下文窗口在训练期间可以达到100万个令牌,在推理期间可以以可承受的成本外推到400万个令牌。我们的视觉语言模型MiniMax-VL-01是通过5120亿视觉语言令牌的持续训练构建的。在标准和内部基准测试中的实验表明,我们的模型与GPT-4o和Claude-3.5-Sonnet等最先进的模型的性能相匹配,同时提供了20-32倍的上下文窗口。我们在 https://github.com/MiniMax-AI 上公开发布 MiniMax-01。

🛎️文章简介

🔸研究问题:如何提升大语言模型(LLM)在处理长上下文时的计算效率和性能?
🔸主要贡献:论文提出了一个结合线性注意力和软注意力机制的专家混合(MoE)架构,显著提升了模型在处理长上下文时的效率和性能。

📝重点思路

🔸混合架构设计:论结合线性注意力(Lightning Attention)和软注意力(Softmax Attention)的MoE架构,每7个线性注意力层后接一个软注意力层,共80层。
🔸训练和推理框架优化:为了支持混合架构,重新设计了训练和推理框架,包括专家并行(EP)和专家张量并行,以减少跨GPU通信的开销。
🔸数据预处理和训练策略:采用了严格的数据清洗和质量增强策略,并通过三阶段训练过程扩展了模型的上下文窗口至100万token。
🔸实验验证:通过一系列实验验证了混合架构在不同规模模型上的性能,包括在标准学术基准和内部基准上的表现。

🔎分析总结

🔸混合架构的有效性:混合架构在处理长上下文时表现出色,尤其是在超过200k token的上下文中,性能显著优于纯软注意力模型。
🔸线性注意力的局限性:纯线性注意力模型在检索任务上表现不佳,但通过混合架构(每8层替换为软注意力)可以显著提升检索性能。
🔸训练速度和效率:混合架构在训练速度上优于纯软注意力模型,尤其是在长序列情况下,保持了较高的计算效率。
🔸长上下文处理能力:模型在长上下文推理任务中表现出色,尤其是在1M token的上下文中,性能显著优于其他基准模型。

💡个人观点

论文的核心是混合线性和软注意力,大幅扩展了上下文窗口。

🧩附录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值