英伟达:LLM混合模型架构Nemotron-H

在这里插入图片描述

📖标题:Nemotron-H: A Family of Accurate and Efficient Hybrid Mamba-Transformer Models NVIDIA
🌐来源:arXiv, 2504.03624

🌟摘要

🔸随着推理时间缩放对于增强推理能力变得至关重要,构建高效推理的模型变得越来越重要。我们介绍了NemotronH,这是一个8B和56B/47B混合曼巴变压器模型系列,旨在降低给定精度水平的推理成本。
🔸为了实现这一目标,我们用Mamba层替换了常见Transformer模型架构中的大多数自我关注层,Mamba层执行恒定计算,并且每个生成的令牌需要恒定内存。我们发现,与其他类似大小的最先进的开源Transformer模型(例如Qwen-2.5-7B/72B和Llama-3.1-8B/70B)相比,Nemotron-H模型提供了更好或同等的精度,同时推理速度快3倍。为了进一步提高推理速度并减少推理时所需的内存,我们使用一种名为MiniPuzzle的新的修剪和蒸馏压缩技术,从56B模型创建了Nemotron-H-47B-Base。
🔸Nemotron-H-47B-Base的精度与56B模型相似,但推断速度快20%。此外,我们介绍了一种基于FP8的训练配方,并表明它可以与基于BF16的训练达到同等效果。此配方用于训练56B模型。所有Nemotron-H型号都将发布,并支持Hugging Face、NeMo和Megatron LM。

🛎️文章简介

🔸研究问题:传统Transformer架构在自注意力机制中计算效率低下。
🔸主要贡献:论文提出了一系列高效的混合模型Nemotron-H,通过替换自注意力层来提升模型的计算和内存效率,同时保持竞争力的性能。

📝重点思路

🔸设计了一种混合架构Nemotron-H,结合了Mamba和滑动窗口注意力机制,减少自注意力计算的复杂度。
🔸利用高质量的网络爬虫数据集Nemotron-CC进行模型训练,并通过多种数据处理技术提升数据质量。
🔸引入合成数据生成技术,通过不同的处理管道对低质量数据进行去噪和多样性增强。
🔸在多个基准任务上与现有的开源Transformer模型进行比较,评估Nemotron-H的准确性和推理速度。

🔎分析总结

🔸实验结果表明,Nemotron-H模型在多个任务上超越了传统的Transformer模型,显示出更高的准确性和更快的推理速度。
🔸使用高质量数据集进行训练,Nemotron-H模型的表现比其他领先的模型(如DCLM和FineWeb-Edu)更为优越,尤其在处理长序列时表现显著。
🔸合成数据的引入提高了模型在数学和编程任务上的推理能力,特别是在GSM8K和MATH基准测试中显著提升了分数。
🔸在长上下文处理方面,Nemotron-H模型通过优化训练数据和结构设计,成功增强了模型的上下文理解能力。

💡个人观点

论文通过引入混合模型架构,有效地解决了LLM在自注意力机制中的计算复杂性问题,同时在数据处理和模型训练上采取多样化的策略,显著提升了模型的性能和适用性。

🧩附录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值