在缺陷检测中如何解决小目标问题

本课程聚焦工业缺陷检测,特别是小目标检测的难题,涵盖低对比度、少量样本学习和异常检测案例。通过学习,学员将掌握解决实际工业场景中难点的能力,并了解pytorch和opencv在工业检测中的应用。
摘要由CSDN通过智能技术生成

在工业生产过程中,由于现有技术、工作条件等因素的不足和局限性,极易影响制成品的质量。其中,表面缺陷是产品质量受到影响的最直观表现,因此,为了保证合格率和可靠的质量,必须进行产品表面缺陷检测。

图片

缺陷”一般可以理解为与正常样品相比的缺失、缺陷或面积。表面缺陷检测是指检测样品表面的划痕、缺陷、异物遮挡、颜色污染、孔洞等缺陷,从而获得被测样品表面缺陷的类别、轮廓、位置、大小等一系列相关信息。

图片

人工缺陷检测曾经是主流方法,但这种方法效率低下;检测结果容易受人为主观因素的影响,不能满足实时检测的要求。本课程主要针对当前工业缺陷检测过程的中的难点进行分析、给出相应的解决方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值