CVPR2023 I 混合Transformers和CNN的注意力网络用于立体图像超分辨率

本文提出了一种混合Transformer和CNN的立体图像超分辨率网络(HTCAN),结合Transformer的长期依赖建模与CNN的信息交换能力,通过多阶段策略实现立体图像的高效增强。在NTIRE 2023立体图像超分辨率挑战赛中,该方法获得23.90dB的分数并取得第一名。
摘要由CSDN通过智能技术生成

作者:小张Tt | 来源:计算机视觉工坊

在公众号「计算机视觉工坊」后台,回复「原论」即可获取论文pdf。

多阶段策略在图像修复任务中被广泛应用,虽然基于Transformer的方法在单图像超分辨率任务中表现出高效率,但在立体超分辨率任务中尚未展现出CNN-based方法的显著优势。这可以归因于两个关键因素:首先,当前单图像超分辨率Transformer在该过程中无法利用互补的立体信息;其次,Transformer的性能通常依赖于足够的数据,在常见的立体图像超分辨率算法中缺乏这些数据。为了解决这些问题,作者提出了一种混合Transformer和CNN注意力网络(HTCAN),它利用基于Transformer的网络进行单图像增强和基于CNN的网络进行立体信息融合。此外,作者采用了多块训练策略和更大的窗口尺寸,以激活更多的输入像素进行超分辨率。作者还重新审视了其他高级技术,如数据增强、数据集成和模型集成,以减少过拟合和数据偏差。最后,作者的方法在NTIRE 2023立体图像超分辨率挑战的Track 1中获得了23.90dB的分数,并成为优胜者。

1 前言

立体图像超分辨的最终性能取决于每个视图的特征提取能力和立体信息交换能力。相比于卷积神经网络,变换器拥有更大的感受野和自我关注机制&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值