扩增子测序|iCAMP包——基于系统发育零模型分析确定性和随机性在群落构建过程R中实践

目录

1、引言

2、文献美图欣赏

3、iCAMP分析流程

4、示例数据和R代码

4.1、数据准备

4.2、完整R代码

4.3、输出结果

5、参考文献

6、相关信息


1、引言

R包iCAMP为群落组装机制的量化分析提供了一种新的方法。基于系统发育分箱的零模型分析,用于评估不同生态过程(同质选择、异质选择、扩散和漂变)对整个群落及各个系统发育分箱(bin)的相对重要性。Ning et al. 2020年在Nature Communications发布该方法以来截止2024年9月已经被引506次,成为了群落构建分析的重要分析方法。该方法也成为nature,science系列文章的常客,深受大家喜欢,在文章中运用该方法将为论文增色不少。

2、文献美图欣赏

图片来源,Ning et al. 2020,Nature Communications。

中央是系统发育树,内环展示了不同过程的相对重要性,表示每个系统发育箱中的DL(中间环)和HeS(外环)的丰度加权重要性。外环和内环的圆环图显示了每个门(或变形菌门的分类)中不同过程的相对重要性。

图片来源,Ning et al. 2020,Nature Communications。

不同群落组装过程在冰川前缘和湖泊栖息地中对蓝藻、硅藻和无脊椎动物的相对重要性。

3、iCAMP分析流程

iCAMP的核心功能是通过系统发育分箱的零模型分析,量化不同生态过程的相对重要性。将分类群依据其系统发育关系划分到不同的bin。核心参数是βNRI和RC。βNRI值小于-1.96或大于1.96分别指示同质选择(HoS)和异质选择(HeS);当|βNRI|≤1.96且RC值小于-0.95时,表示均质扩散(HD);当|βNRI|≤1.96且RC值大于0.95时,表示扩散限制(DL);当|βNRI|≤1.96且|RC|≤0.95时,表示漂变(DR)。

图片来源,Ning et al. 2020,Nature Communications。

4、示例数据和R代码

4.1、数据准备

下述文件1,2,4为必须文件,3和5可以根据研究目标进行取舍

1、OTU 表文件(制表符分隔的 TXT 文件):otus.txt

2、系统发育树文件:tree.nwk

3、分类(分类学)信息:classification.txt

4、处理信息表:treat2col.txt

5、环境变量:environment.txt

4.2、完整R代码

设置文件夹路径和文件名
# 1 # 设置文件夹路径和文件名,请根据计算机上的实际文件夹路径和文件名进行更改。
# 保存输入文件的文件夹

wd="E:/0A博士项目/11参与项目/生信项目/零模型/icamp1"

# OTU 表文件(制表符分隔的 TXT 文件)
com.file <- "otus.txt"

# 系统发育树文件
tree.file <- "tree.nwk"

# 分类(分类学)信息
clas.file <- "classification.txt"

# 处理信息表
treat.file <- "treat2col.txt"

# 环境变量
env.file <- "environment.txt"
# 如果没有环境文件或环境变量不代表生态位,可以跳过第7步和第8步。
# 但要检查确定 binning 设置的替代方法,例如 bin.size.limit。
# 环境变量文件路径可能与实际情况不同,所以需要根据实际情况调整

# 保存输出的文件夹路径。即使只是测试示例数据,也请更改为一个新的文件夹。
save.wd="E:/0A博士项目/11参与项目/生信项目/零模型/icamp1/Testoutput2"
if(!dir.exists(save.wd)){dir.create(save.wd)}

设置参数
# 2 # 关键参数设置
prefix <- "Test"  # 输出文件名的前缀。通常使用项目 ID。
rand.time <- 100  # 随机化次数,1000 次通常足够。例如测试时,可以设置为 100 或更少以节省时间。
nworker <- 4  # nworker 是并行计算的线程数,这取决于计算机的 CPU 核心数。
#memory.G <- 50  # 设置所需的内存大小(新版本R无法运行该函数)

载入包并读取数据
# 3 # 载入包并读取数据
if (!require(iCAMP, quietly = TRUE)) install.packages("iCAMP")
if (!require(ape, quietly = TRUE)) install.packages("ape")
library(iCAMP)
library(ape)
setwd(wd)
comm=t(read.table(com.file, header = TRUE, sep = "\t", row.names = 1,
                  as.is = TRUE, stringsAsFactors = FALSE, comment.char = "",
                  check.names = FALSE))
tree=read.tree(file = tree.file)
clas=read.table(clas.file, header = TRUE, sep = "\t", row.names = 1,
                as.is = TRUE, stringsAsFactors = FALSE, comment.char = "",
                check.names = FALSE)
treat=read.table(treat.file, header = TRUE, sep = "\t", row.names = 1,
                 as.is = TRUE, stringsAsFactors = FALSE, comment.char = "",
                 check.names = FALSE)

env=read.table(env.file, header = TRUE, sep = "\t", row.names = 1,
               as.is = TRUE, stringsAsFactors = FALSE, comment.char = "",
               check.names = FALSE) # skip this if you do not have env.file

匹配OUT表和信息表以及树文件中样本ID
# 4 # 匹配 OTU 表和处理信息表中的样本 ID
sampid.check = match.name(rn.list = list(comm = comm, treat = treat, env = env))
# sampid.check = match.name(rn.list = list(comm = comm, treat = treat)) # 如果没有 env 文件
# 对于示例数据,输出应为 "All match very well"。
# 对于您的数据文件,如果未匹配 ID,则未匹配的样本将被删除。
treat = sampid.check$treat
comm = sampid.check$comm
comm = comm[, colSums(comm) > 0, drop = FALSE] # 如果某些不匹配的样本被移除,可能会出现一些虚假的 OTU,您可以使用这一行代码在必要时将它们移除。
env = sampid.check$env # 如果没有 env 文件则跳过此步骤

# 5 # 匹配 OTU 表和树文件中的 OTU ID
spid.check = match.name(cn.list = list(comm = comm), rn.list = list(clas = clas), tree.list = list(tree = tree))
# 对于示例数据,输出应为 "All match very well"。
# 对于您的数据文件,如果之前没有匹配 ID,则未匹配的 OTU 将被删除。
comm = spid.check$comm
clas = spid.check$clas
tree = spid.check$tree
计算成对的系统发育距离矩阵
# 由于微生物群落数据通常包含大量物种(OTU 或 ASV),我们使用 R 包 "bigmemory" 中的 "big.matrix" 来处理大型系统发育距离矩阵。 
setwd(save.wd)
if (!file.exists("pd.desc")) 
{
  pd.big = iCAMP::pdist.big(tree = tree, wd = save.wd, nworker = nworker)
  # 输出文件:
  # path.rda: 一个 R 对象,列出从根到每个叶子的所有节点和边长,保存为 R 数据格式。这是计算系统发育距离矩阵的一个中间输出。
  # pd.bin: BIN 文件(backingfile),由 R 包 bigmemory 中的 big.matrix 函数生成。这是存储成对系统发育距离值的大矩阵。使用这种 bigmemory 格式文件时,计算时不需要物理内存,而是使用硬盘。
  # pd.desc: DESC 文件(描述文件),用于保存 backingfile(pd.bin)的描述。
  # pd.taxon.name.csv: 逗号分隔的 CSV 文件,存储树叶的 ID(OTU),用作大系统发育距离矩阵的行/列名称。
} else {
  # 如果您已经在之前的运行中计算了系统发育距离矩阵
  pd.big = list()
  pd.big$tip.label = read.csv(paste0(save.wd, "/pd.taxon.name.csv"), row.names = 1, stringsAsFactors = FALSE)[, 1]
  pd.big$pd.wd = save.wd
  pd.big$pd.file = "pd.desc"
  pd.big$pd.name.file = "pd.taxon.name.csv"
}


确定bin内最小物种数目
# 7 # 评估物种之间的生态位偏好差异
# 这个步骤需要 env 文件。
# 由于微生物群落数据通常包含大量物种(OTU 或 ASV),我们使用 R 包 "bigmemory" 中的 "big.matrix" 来处理大型生态位差异矩阵。
setwd(save.wd)
niche.dif = iCAMP::dniche(env = env, comm = comm, method = "niche.value",
                          nworker = nworker, out.dist = FALSE, bigmemo = TRUE,
                          nd.wd = save.wd)

# 8 # 评估每个分类单元内的系统发育信号
# 对于实际数据,你可以尝试不同的分箱设置,并选择能够产生最佳分类单元内系统发育信号的设置。
# 这个步骤需要 env 文件。

# 8.1 # 尝试使用当前设置进行系统发育分箱
ds = 0.2 # 设置可以更改以探索最佳选择
bin.size.limit = 5 # 设置可以更改以探索最佳选择。此处设置为5,仅用于小型示例数据集。对于实际数据,通常尝试12到48。

# 对于 taxa.binphy.big 函数,树必须是有根的。
if(!ape::is.rooted(tree))
{
  tree.rt = iCAMP::midpoint.root.big(tree = tree, pd.desc = pd.big$pd.file,
                                     pd.spname = pd.big$tip.label, pd.wd = pd.big$pd.wd,
                                     nworker = nworker)
  tree = tree.rt$tree
}
phylobin = taxa.binphy.big(tree = tree, pd.desc = pd.big$pd.file, pd.spname = pd.big$tip.label,
                           pd.wd = pd.big$pd.wd, ds = ds, bin.size.limit = bin.size.limit,
                           nworker = nworker)
# 8.2 # 测试分类单元内的系统发育信号
sp.bin = phylobin$sp.bin[, 3, drop = FALSE]  # 从 phylobin 中提取系统发育分类单元
sp.ra = colMeans(comm / rowSums(comm))  # 计算每个物种的相对丰度
abcut = 3  # 你可以移除一些物种,如果它们太稀有而无法进行可靠的相关性测试
commc = comm[, colSums(comm) >= abcut, drop = FALSE]  # 只保留丰度大于 abcut 的物种
dim(commc)  # 输出 commc 的维度
spname.use = colnames(commc)  # 获取物种名称
binps = iCAMP::ps.bin(sp.bin = sp.bin, sp.ra = sp.ra, spname.use = spname.use,
                      pd.desc = pd.big$pd.file, pd.spname = pd.big$tip.label, pd.wd = pd.big$pd.wd,
                      nd.list = niche.dif$nd, nd.spname = niche.dif$names, ndbig.wd = niche.dif$nd.wd,
                      cor.method = "pearson", r.cut = 0.1, p.cut = 0.05, min.spn = 5)  # 计算系统发育信号

# 将结果保存到文件中
if(file.exists(paste0(prefix, ".PhyloSignalSummary.csv"))) {
  appendy = TRUE
  col.namesy = FALSE
} else {
  appendy = FALSE
  col.namesy = TRUE
}
write.table(data.frame(ds = ds, n.min = bin.size.limit, binps$Index),
            file = paste0(prefix, ".PhyloSignalSummary.csv"),
            append = appendy, quote = FALSE, sep = ",", row.names = FALSE, col.names = col.namesy)

if(file.exists(paste0(prefix, ".PhyloSignalDetail.csv"))) {
  appendy2 = TRUE
  col.namesy2 = FALSE
} else {
  appendy2 = FALSE
  col.namesy2 = TRUE
}
write.table(data.frame(ds = ds, n.min = bin.size.limit, binID = rownames(binps$detail), binps$detail),
            file = paste0(prefix, ".PhyloSignalDetail.csv"),
            append = appendy2, quote = FALSE, sep = ",", row.names = FALSE, col.names = col.namesy2)

# 由于这个示例小数据是随机生成的,相关性应该非常弱。
# 通常,你需要寻找一个能够导致更高的 RAsig.abj(具有显著系统发育信号的分类单元的相对丰度)
#和相对较高的 meanR(分类单元间的平均相关系数)的分箱设置。
# 详细请参阅 "ps.bin" 函数的帮助文档以了解输出的意义。

iCAMP分析
# 9 # iCAMP分析
# 9.1 # 不去除小分类单元
# 通常使用 # 将 sig.index 设置为 Confidence,而不是 SES.RC (betaNRI/NTI + RCbray)
bin.size.limit = 5  # 对于真实数据,通常根据系统发育信号测试选择适当的数字或尝试一些设置,然后选择合理的随机性水平。我们的经验值是 12、24 或 48。但由于这个示例数据集太小,只能使用 5。
sig.index = "Confidence"  # 参考 icamp.big 帮助文档中的其他选项。
icres = iCAMP::icamp.big(comm = comm, pd.desc = pd.big$pd.file, pd.spname = pd.big$tip.label,
                         pd.wd = pd.big$pd.wd, rand = rand.time, tree = tree,
                         prefix = prefix, ds = 0.2, pd.cut = NA, sp.check = TRUE,
                         phylo.rand.scale = "within.bin", taxa.rand.scale = "across.all",
                         phylo.metric = "bMPD", sig.index = sig.index, bin.size.limit = bin.size.limit, 
                         nworker = nworker, rtree.save = FALSE, detail.save = TRUE, 
                         qp.save = FALSE, detail.null = FALSE, ignore.zero = TRUE, output.wd = save.wd, 
                         correct.special = TRUE, unit.sum = rowSums(comm), special.method = "depend",
                         ses.cut = 1.96, rc.cut = 0.95, conf.cut = 0.975, omit.option = "no", meta.ab = NULL)

# 这个函数有很多参数,请查阅 "icamp.big" 的帮助文档以了解更多信息。
# 输出文件:
# Test.iCAMP.detail.rda:以 R 数据格式保存的 "icres" 对象。它是一个列表对象。
#第一个元素 bNRIiRCa 是每对比较(每次替代)的组装过程相对重要性的结果。
#第二个元素 "detail" 包括每个分类单元的分类信息(名为 taxabin)、
#每个分类单元中的系统发育和分类度量结果(名为 bNRIi、RCa 等)、
#每个分类单元的相对丰度(bin.weight)、
#每个社区之间每个过程的相对重要性(processes)、
#输入设置(setting)和输入社区数据矩阵(comm)。
#有关详细信息,请参阅函数 icamp.big 的帮助文档

!!!bin.size.limit = 5该参数要根据上一步的结果进行选择。
!!!提供的代码中有其他的iCAMP分析方法(9.2-9.6),应对的不同需求,可根据需求选择。

iCAMP bin 水平统计
# 10 # iCAMP bin 水平统计
icbin=iCAMP::icamp.bins(icamp.detail = icres$detail,treat = treat,
                        clas=clas,silent=FALSE, boot = TRUE,
                        rand.time = rand.time,between.group = TRUE)
save(icbin,file = paste0(prefix,".iCAMP.Summary.rda")) # 仅用于归档结果。rda 文件会自动压缩,方便加载到 R 中。
write.csv(icbin$Pt,file = paste0(prefix,".ProcessImportance_EachGroup.csv"),row.names = FALSE)
write.csv(icbin$Ptk,file = paste0(prefix,".ProcessImportance_EachBin_EachGroup.csv"),row.names = FALSE)
write.csv(icbin$Ptuv,file = paste0(prefix,".ProcessImportance_EachTurnover.csv"),row.names = FALSE)
write.csv(icbin$BPtk,file = paste0(prefix,".BinContributeToProcess_EachGroup.csv"),row.names = FALSE)
write.csv(data.frame(ID=rownames(icbin$Class.Bin),icbin$Class.Bin,stringsAsFactors = FALSE),
          file = paste0(prefix,".Taxon_Bin.csv"),row.names = FALSE)
write.csv(icbin$Bin.TopClass,file = paste0(prefix,".Bin_TopTaxon.csv"),row.names = FALSE)

Bootstrapping 测试
# 11 # Bootstrapping 测试
# 请指定处理信息表中的哪一列。
i=1
treat.use=treat[,i,drop=FALSE]
icamp.result=icres$CbMPDiCBraya
icboot=iCAMP::icamp.boot(icamp.result = icamp.result,treat = treat.use,rand.time = rand.time,
                         compare = TRUE,silent = FALSE,between.group = TRUE,ST.estimation = TRUE)
save(icboot,file=paste0(prefix,".iCAMP.Boot.",colnames(treat)[i],".rda"))
write.csv(icboot$summary,file = paste0(prefix,".iCAMP.BootSummary.",colnames(treat)[i],".csv"),row.names = FALSE)
write.csv(icboot$compare,file = paste0(prefix,".iCAMP.Compare.",colnames(treat)[i],".csv"),row.names = FALSE)

4.3、输出结果

!输出文件

Test.iCAMP.Boot.Management.rda: "icboot" 保存为 R 数据格式。有关对象中每个元素的描述,请参阅 icamp.boot 函数的帮助文档。

Test.BootSummary.Management.csv: 汇总启动测试结果的表格。有关输出元素 "summary" 的描述,请参阅 icamp.boot 函数的帮助文档。

Test.Compare.Management.csv: 汇总每两个组之间比较指数、效应量和显著性的表格。有关输出元素 "compare" 的描述,请参阅 icamp.boot 函数的帮助文档。

!!随后可根据输出文件内容绘制响应的图片,柱状图或者饼图或者其他图片。

5、参考文献

[1] Ning, D., Yuan, M., Wu, L. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun 11, 4717 (2020).

[2] Ning, D., Wang, Y., Fan, Y. et al. Environmental stress mediates groundwater microbial community assembly. Nat Microbiol 9, 490–501 (2024).

[3] Lu, Q., Liu, Y., Zhao, J. and Yao, M. (2024) Successive accumulation of biotic assemblages at a fine spatial scale along glacier-fed waters. iScience 27(4).

6、相关信息

!!!有需要的小伙伴可以去评论区自取今天的测试代码和实例数据。

📌示例代码中提供了数据和代码,已经小编测试,可直接运行。

⚠️本账号会不时更新代码,代码失效可联系小编~

以上就是iCAMP包进行群落构建分析全部内容。

<think>好的,我现在需要帮助用户解决他们在运行iCAMPicamp.boot函数时遇到的错误。用户提供的错误信息是:“Error in array(x, c(length(x), 1L), if (!is.null(names(x))) list(names(x), : 'data' must be of a vector type, was 'NULL'”。这意味着在某个步骤中,函数期望得到一个向量类型的数据,但实际得到的是NULL,即空值。 首先,我需要理解用户的具体情况。用户之前已经运行了icamp.big分析,并试图使用icamp.boot进行引导分析,但遇到了这个错误。根据我的知识,icamp.boot函数用于评估不同处理组之间生态过程的差异,并进行统计检验。错误提示指出某个数据参数是NULL,而预期是一个向量。因此,我需要找出可能导致这个问题的原因。 首先,我应该考虑输入参数是否正确。用户提供的代码是: icboot = iCAMP::icamp.boot(icamp.result = icamp.result, treat = treat.use, rand.time = rand.time, compare = TRUE, silent = FALSE, between.group = TRUE, ST.estimation = TRUE) 可能的错误来源括: 1. `icamp.result`对象是否正确生成,是否有缺失的数据。 2. `treat.use`是否存在或是否正确格式,是否是因子或字符向量。 3. `rand.time`是否设置正确,是否为整数。 4. 其他参数是否合理,比如`compare``between.group`的组合。 接下来,我需要逐步分析这些可能性。 首先检查`icamp.result`。用户之前运行过icamp.big,可能将结果保存为`icres`,但在这里作为`icamp.result`传入。用户是否正确地引用了这个对象?可能在环境中没有`icamp.result`,或者该对象的结构不符合icamp.boot的要求。需要确认`icamp.result`是否有效,是否含必要的数据,比如生态过程的贡献比例等。 其次,检查`treat.use`变量。这个参数应该是分组信息,用于比较不同处理组之间的差异。用户需要确保`treat.use`是一个向量,长度与群落数据的行数(样本数)相同,且已经正确加载到R环境中。如果`treat.use`不存在或格式不正确(比如是数据框而不是向量),就会导致错误。 第三,`rand.time`参数是否正确。用户可能在之前的icamp.big分析中设置了`rand.time`,但在这里需要传递给icamp.boot。需要确认`rand.time`是否是一个正整数,且没有被意外修改为NULL或其他类型。 另外,参数`compare=TRUE``between.group=TRUE`的组合可能需要特定的数据支持。如果分组数量不足,或者在处理组之间没有足够的数据进行比较,也可能导致函数内部生成NULL数据,从而引发错误。 可能的解决方案步骤括: 1. 检查`icamp.result`是否存在且结构正确。 2. 验证`treat.use`的格式内容。 3. 确保所有必要参数正确传递。 4. 查看函数的帮助文档,确认参数的使用方式是否正确。 此外,用户可能没有正确安装或加载iCAMP,或者版本不兼容,导致函数行为异常。但根据错误信息,更可能的是输入数据的问题,而不是本身的问题。 另外,用户可能在运行icamp.big时某些参数设置导致输出结果不完整,比如`detail.save`或`qp.save`设置为FALSE,可能缺少某些必要的数据文件,从而影响后续的icamp.boot分析。例如,如果某些中间结果没有保存,icamp.boot在尝试读取这些数据时会得到NULL,从而报错。 此外,用户提到的错误信息中的数组创建失败,可能是因为在某个步骤中,函数预期得到一个向量,但实际获取的是NULL。这可能是因为某个依赖的数据未被正确计算或保存,例如在处理组比较时,分组信息不正确导致无法生成需要的数据结构。 最后,建议用户逐步检查每个参数,确保输入数据的正确性,并参考官方文档或示例代码,确认参数的使用是否符合要求。如果问题依旧,可以尝试简化参数设置,逐步排除可能的错误源。</think>在运行 `iCAMP::icamp.boot` 时遇到的错误 `'data' must be of a vector type, was 'NULL'` 通常是由于 **输入参数不完整或格式错误** 导致的。以下是逐步排查解决方案: --- ### **错误原因分析** 1. **`icamp.result` 对象无效** - `icamp.boot` 需要从 `icamp.big` 的结果 (`icamp.result`) 中提取数据。若该对象未正确生成或缺失关键信息(如分箱结果、过程贡献比例),会导致后续函数无法读取数据。 2. **`treat.use` 分组变量问题** - `treat` 参数应为 **样本分组信息的向量**(与群落数据 `comm` 的行数一致),若其未定义、格式错误(如数据框而非向量)或含缺失值,会触发此错误。 3. **参数传递冲突** - `compare = TRUE` 或 `between.group = TRUE` 需要依赖特定数据结构的支持,若输入不符合要求(如分组数量不足、分箱结果缺失),可能导致内部计算返回 `NULL`。 --- ### **解决步骤** #### **1. 检查 `icamp.result` 的完整性** 确保 `icamp.big` 的输出结果 (`icres`) 已正确保存并传递给 `icamp.boot`: ```r # 确认 icamp.result 是否存在且为有效对象 class(icamp.result) # 应输出 "icamp" 或类似标识 names(icamp.result) # 检查是否含必要字段,如 "processes", "binning" # 若 icamp.result 未正确生成,重新运行 icamp.big 并确保无报错 icamp.result <- iCAMP::icamp.big(...) # 替换为你的参数 ``` #### **2. 验证 `treat.use` 分组变量** - **格式要求**:`treat.use` 应为字符型或因子型向量,长度等于样本数(群落数据 `comm` 的行数)。 - **检查代码**: ```r # 确认 treat.use 已正确定义且无缺失 head(treat.use) # 查看前几项 length(treat.use) == nrow(comm) # 应返回 TRUE # 若 treat.use 是数据框,需转换为向量 treat.use <- as.vector(treat.use$column_name) # 替换为实际列名 ``` #### **3. 确认 `rand.time` 设置** - **要求**:`rand.time` 应为正整数(推荐 ≥ 1000),用于指定引导重抽样次数。 - **检查代码**: ```r # 确保 rand.time 是整数且未被覆盖为 NULL rand.time <- 1000 # 示例值,需与 icamp.big 中参数一致 class(rand.time) # 应输出 "numeric" ``` #### **4. 调整参数组合** - **简化参数测试**:尝试暂时关闭部分功能(如 `compare` 或 `between.group`),逐步定位问题: ```r icboot <- iCAMP::icamp.boot( icamp.result = icamp.result, treat = treat.use, rand.time = rand.time, compare = FALSE, # 关闭组间比较 between.group = FALSE, # 关闭组间差异分析 ST.estimation = TRUE ) ``` 若简化后运行成功,则问题可能出在组间比较的数据支持不足(如分组数 < 2 或分箱结果缺失)。 --- ### **常见问题与修复** #### **场景 1:`treat.use` 分组信息不匹配** - **表现**:样本分组数量或名称与 `icamp.result` 中的结果不一致。 - **修复**: ```r # 确保 treat.use 与 comm 的行名对应 rownames(comm) <- paste0("Sample", 1:nrow(comm)) # 示例:添加行名 treat.use <- factor(c(rep("Group1", 10), rep("Group2", 10))) # 示例分组 ``` #### **场景 2:分箱结果缺失** - **原因**:`icamp.big` 中 `bin.size.limit` 过小导致分箱失败。 - **修复**: ```r # 增大 bin.size.limit 并重新运行 icamp.big icamp.result <- iCAMP::icamp.big( ..., bin.size.limit = 24, # 根据数据量调整 detail.save = TRUE # 确保保存分箱细节 ) ``` #### **场景 3:依赖文件未找到** - **原因**:`output.wd` 路径错误或文件未生成。 - **修复**: ```r # 检查输出目录是否存在且含必要文件 list.files(save.wd) # 应含 Processes_Summary_*.csv 等文件 setwd(save.wd) # 确保路径正确 ``` --- ### **完整代码示例** ```r # 重新生成有效的 icamp.result icamp.result <- iCAMP::icamp.big( comm = comm, pd.desc = pd.big$pd.file, pd.spname = pd.big$tip.label, pd.wd = pd.big$pd.wd, rand = 1000, # 与后续 rand.time 一致 tree = tree, prefix = "test", bin.size.limit = 24, # 增大分箱限制 output.wd = save.wd, detail.save = TRUE # 确保保存细节 ) # 定义 treat.use(假设有 20 个样本,分 2 组) treat.use <- factor(rep(c("GroupA", "GroupB"), each = 10)) # 运行 icamp.boot(简化参数) icboot <- iCAMP::icamp.boot( icamp.result = icamp.result, treat = treat.use, rand.time = 1000, compare = TRUE, between.group = TRUE, ST.estimation = TRUE ) ``` --- ### **注意事项** 1. **版本兼容性** 确保使用的 `iCAMP` 版本与当前 R 环境兼容,必要时更新: ```r install.packages("iCAMP") # 从 CRAN 或 GitHub 安装最新版 ``` 2. **错误追踪** 启用详细日志输出以定位问题: ```r icboot <- iCAMP::icamp.boot(..., silent = FALSE) # 显示详细运行信息 ``` 3. **数据验证** 检查中间步骤的输出文件(如 `Processes_Summary_*.csv`)是否正常生成,避免因权限或路径问题导致数据丢失。 若仍存在问题,请提供 `icamp.result` 的结构信息(`str(icamp.result)`) `treat.use` 的示例数据!
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值