根据x-ray生成训练csv文件

本文介绍了一种使用Python构建图像数据集的方法。通过列出正常和肺炎两类图片文件,并为每张图片分配标签,最终形成可用于训练机器学习模型的数据集。示例中使用了os模块来获取文件列表,pandas库则用于创建DataFrame并输出数据集。
摘要由CSDN通过智能技术生成
import os
import pandas as pd
l_nor = os.listdir(train_nor_dir)
l_nor_label = [0 for i in l_nor]

l_pne = os.listdir(train_pne_dir)
l_pne_label = [1 for i in l_pne]


l_img = l_nor + l_pne
l_label = l_nor_label + l_pne_label


data = {"img": l_img, "l_label": l_label}
data_df = pd.DataFrame(data)

在这里插入图片描述

data_df.values
array([['NORMAL2-IM-0771-0001.jpeg', 0],
       ['NORMAL2-IM-1294-0001-0002.jpeg', 0],
       ['IM-0675-0001.jpeg', 0],
       ...,
       ['person931_virus_1592.jpeg', 1],
       ['person861_virus_1506.jpeg', 1],
       ['person1051_bacteria_2985.jpeg', 1]], dtype=object)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值