九章云极AlayaNeW
人工智能基础设施供应商,普惠算力的领导者
66篇原创内容
公众号
在大模型技术落地的过程中,推理效率和开发灵活性是开发者最关注的两大痛点。开源社区涌现了多个优化框架,其中vLLM和SGLang近期热度颇高。
两者看似定位相似,但设计理念和适用场景却有显著差异。本文从核心技术、使用场景等维度展开对比,帮你找到最适合的解决方案。
01
核心定位:吞吐量优先 vs 交互式编程
- vLLM:极致推理性能的“速度狂魔”
vLLM由加州大学伯克利分校团队开发,核心目标是提升大模型推理的吞吐量,尤其适合高并发、批处理的场景。其招牌技术PagedAttention,灵感来自操作系统的内存分页管理,通过动态管理KV Cache内存碎片,显著提高GPU利用率。实测中,vLLM可将70B大模型的吞吐量提升24倍,且原生支持HuggingFace模型,几乎无需修改代码即可部署。
- SGLang:面向交互的“编程增强器”
SGLang由清华和UC伯克利联合推出,主打复杂提示词(prompt)的灵活编排。
它通过RadixAttention缓存技术、异步并行执行等设计,优化多轮对话、树状采样、外部函数调用等场景的编程体验。
开发者可以用Python原生语法实现动态控制流(如循环、分支),特别适合智能体(Agent)、游戏NPC等需要状态管理的应用。
02
vLLM vs SGLang 适用场景对比表
⭐ 代表推荐程度
03
总结
总体而言,vLLM 在模型支持和应用生态方面具有优势,而 SGLang 在推理性能优化表现相对出色。性能上,SGLang 在顺序请求和并发请求场景中始终优于 vLLM。
在并发负载下,差异尤其明显,SGLang 保持稳定吞吐量的能力凸显了其卓越的可扩展性和鲁棒性。这些发现表明,对于需要高并发和高效处理大量请求的应用程序来说,SGLang 是更好的选择。
目前vLLM和SGLang的代码库已开始互相借鉴(如vLLM计划引入RadixAttention),但短期内仍是差异化竞争。
对于企业级应用,甚至可以组合使用:用vLLM作为底层推理引擎,配合SGLang编排上层交互逻辑,兼顾性能与灵活性。
所以,选择用哪一个?关键是看你的需求是什么:
- 追求速度和部署简便→ vLLM
- 需要灵活控制生成逻辑→ SGLang
- 鱼和熊掌都想要→ 关注两者的融合进展,或组合使用
大模型落地没有万能钥匙,理解框架背后的设计哲学,才能找到最优解。