vLLM vs SGLang:大模型推理框架,谁更适合你的需求?

SGLang和vLLM 大模型推理引擎对比

九章云极AlayaNeW

人工智能基础设施供应商,普惠算力的领导者

66篇原创内容

公众号

在大模型技术落地的过程中,推理效率开发灵活性是开发者最关注的两大痛点。开源社区涌现了多个优化框架,其中vLLMSGLang近期热度颇高。

两者看似定位相似,但设计理念和适用场景却有显著差异。本文从核心技术、使用场景等维度展开对比,帮你找到最适合的解决方案。

01

核心定位:吞吐量优先 vs 交互式编程

  1. vLLM:极致推理性能的“速度狂魔”
     

vLLM由加州大学伯克利分校团队开发,核心目标是提升大模型推理的吞吐量,尤其适合高并发、批处理的场景。其招牌技术PagedAttention,灵感来自操作系统的内存分页管理,通过动态管理KV Cache内存碎片,显著提高GPU利用率。实测中,vLLM可将70B大模型的吞吐量提升24倍,且原生支持HuggingFace模型,几乎无需修改代码即可部署。

  1. SGLang:面向交互的“编程增强器”
     

SGLang由清华和UC伯克利联合推出,主打复杂提示词(prompt)的灵活编排

它通过RadixAttention缓存技术异步并行执行等设计,优化多轮对话、树状采样、外部函数调用等场景的编程体验。

开发者可以用Python原生语法实现动态控制流(如循环、分支),特别适合智能体(Agent)、游戏NPC等需要状态管理的应用。

02

vLLM vs SGLang 适用场景对比表

⭐ 代表推荐程度

图片

03

   总结

总体而言,vLLM 在模型支持和应用生态方面具有优势,而 SGLang 在推理性能优化表现相对出色。性能上,SGLang 在顺序请求和并发请求场景中始终优于 vLLM。

在并发负载下,差异尤其明显,SGLang 保持稳定吞吐量的能力凸显了其卓越的可扩展性和鲁棒性。这些发现表明,对于需要高并发和高效处理大量请求的应用程序来说,SGLang 是更好的选择。

目前vLLM和SGLang的代码库已开始互相借鉴(如vLLM计划引入RadixAttention),但短期内仍是差异化竞争。

对于企业级应用,甚至可以组合使用:用vLLM作为底层推理引擎,配合SGLang编排上层交互逻辑,兼顾性能与灵活性。

所以,选择用哪一个?关键是看你的需求是什么:

  • 追求速度和部署简便→ vLLM
  • 需要灵活控制生成逻辑→ SGLang
  • 鱼和熊掌都想要→ 关注两者的融合进展,或组合使用

大模型落地没有万能钥匙,理解框架背后的设计哲学,才能找到最优解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值