MSFFA-YOLO Network: Multiclass Object Detection for Traffic Investigations in Foggy Weather

本文介绍了一种新的多尺度特征融合注意力-YOLO(MSFFA-YOLO)网络,结合YOLov7进行雾天交通物体的检测,提升了可见度并实现目标分类和定位。实验结果表明,该方法在雾天条件下能有效识别隐藏的交通目标,支持交通调查和安全管理。
摘要由CSDN通过智能技术生成

MSFFA-YOLO Network: Multiclass Object Detection for Traffic Investigations in Foggy Weather

abstract

这篇文章提出了一种多类别目标检测方法,multiscale feature fusion attention-YOLO(MSFFA-YOLO)网络,可以进行训练并且同时完成三项任务:可见度提升,目标分类,目标定位。这个网络使用yolov7作为子网络,负责学习定位和分类。在恢复网络中,MSFFA结构用来提升可见性。

Introduction

雾中某些交通物体的隐藏可能会对多类交通物体的准确检测构成重大障碍。
本文主要贡献如下:

  • 提出了一个新的目标检测方法即MSFFA-YOLO,包括多尺度特征融合、特征注意力机制,增强YOLOv7对有雾天气的目标检测的准确性
  • 我们提出的方法在物体定位和分类任务中取得了卓越的性能,同时也证明了其在雾天条件下检测隐蔽交通物体的优越准确性。
  • 我们提出的方法可以在雾天提供准确可靠的交通物体信息,从而有助于交通调查,有助于提高交通安全和优化交通管理。

related works

some method:

  • 使用合成雾数据集扩充训练数据,提高方法泛化能力
  • 修改骨干网络或添加新模块以适应雾蒙蒙的场景
  • 应用注意力机制或后处理技术抑制噪声并突出显著特征

Methods

在这里插入图片描述

Restoration Subnet

恢复子网络包括编码结构、特征转换结构、特征注意力结构、解码结构。可以采用CNN从图像中提取不同尺度的特征,然后使用残差连接来融合这些特征图。通过将特征注意力结构合并到恢复子网中,它使恢复子网能够在具有密集雾和重要信道信息的区域中表现出非凡的性能。
Encoder structure
关于编码结构,卷积操作可以表示为如下公式
在这里插入图片描述
Di是编码阶段第i层的特征图。Conven代表编码阶段的卷积。对于这种卷积,卷积核为33。卷积的步长为1,卷积后的通道数是前一个特征图的通道数的两倍。每次卷积操作后带一个ReLU。下采样操作,卷积核为22.

Feature Conversion Structure
在这里插入图片描述
为了实现网络精度和计算效率的平衡,特征转换结构包括18个两层残差块。两层残差块包括卷积层和ReLU函数。卷积核为3*3,步长为1。ReLU函数作为激活函数。特征转换结构的输入为编码结构的输出。
Feature Attention Structure
在这里插入图片描述

特征注意力结构包括通道注意力结构和像素注意力结构。通道注意力结构包括池化层、卷积层,ReLU函数,和sigmoid函数。像素注意力结构包括两个卷积层和一个ReLU函数、sigmoid函数。
关于通道注意力结构,计算步骤如下:
在这里插入图片描述

gc是输出特征图的第c个通道。Hp是池化函数。Fc是输入特征图的第c个通道。H是特征图的高,W是特征图的宽。Xc(i,j)是第C通道特征图的像素(i,j)的值。Conv是3*3的卷积。CAc是第c通道的权重。Fc是经过通道注意力结构的特征图。
关于像素级注意力结构:
在这里插入图片描述
PA是像素权重。

Decoder Structure
解码结构包括卷积层和上采样层。
在这里插入图片描述

Postprocessing Algorithm
关于原始算法,误检容易发生在交通目标密集的场景中,为了克服这种问题, 我们采用了Soft-NMS算法。算法如下:
在这里插入图片描述

Loss function
除了Yolov7的损失,MSFFA的损失也被引入。
损失如下:
在这里插入图片描述
N是整个图片的像素数量;p代表第p个像素;c代表第c个通道;在这里插入图片描述
代表预测的第c个通道第p个像素值。
在这里插入图片描述代表原图

Experiments

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 22
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Pruned-YOLO是一种利用模型修剪来学习高效物体检测器的方法。 物体检测是计算机视觉领域的重要任务之一,旨在从图像中准确地识别和定位出现的物体。然而,传统的物体检测器通常具有复杂的结构和大量的参数,导致它们在实时应用或资源受限的环境中效率不高。 为了解决这个问题,Pruned-YOLO采用了一种名为模型修剪的技术。模型修剪是一种通过删除不必要的参数来减小模型大小和计算量的方法。在Pruned-YOLO中,首先训练一个原始的YOLO模型,在这个模型中包含了大量的参数。然后,通过对这个模型进行剪枝操作,删除冗余的参数,从而得到一个修剪后的模型。 模型修剪的关键是确定哪些参数可以被安全地删除。在Pruned-YOLO中,采用了一种称为敏感度分析的方法来评估参数对于模型性能的重要性。通过计算每个参数对于模型损失函数的梯度,可以确定其敏感度。如果某个参数的敏感度较低,即梯度接近于零,那么这个参数可以被删除而不会对模型性能产生显著影响。 通过对YOLO模型进行修剪,Pruned-YOLO可以显著减少模型的大小和计算需求,从而提高物体检测的效率。实验证明,Pruned-YOLO在保持较高检测准确率的同时,将模型大小和计算量减少了约50%。这使得Pruned-YOLO成为了一种适用于边缘设备、嵌入式系统和实时应用的高效物体检测解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值