零代码复现| scRNA-seq解析胃癌患者器官特异性转移

写在前面

当今基因测序数据量在爆炸性增加,生信分析面临着算力要求高代码软件繁多、科研人员协作分析困难等一系列痛点。为解决这些问题,各种生信云平台应运而生,它提供了一系列生物信息学工具和资源,用于支持科研人员在生物学数据的分析、可视化和解释方面的需求。SeekSoul Online便是其中一个,相信对于想要快速上手单细胞数据分析的你来说会是个惊喜:

云平台地址:

使用教程可见:

一文学会零代码单细胞分析

零代码单细胞视频教程

文章介绍

复现文章标题:《Revealing the transcriptional heterogeneity of organ‐specific metastasis in human gastric cancer using single‐cell RNA Sequencing》

复现集锦:

发表日期和杂志:2022年发表在Clinical and Translational Medicine上

在线阅读链接:https://doi.org/10.1002/ctm2.730

图片

单细胞实验设计:使用了单细胞RNA测序技术评估了来自6名患者的10个新鲜人体组织样本,共计42,968个细胞。

图片

数据链接是:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163558

样品详情:

  • 来自6名患者的10个新鲜人体组织样本,包括3个原发性肿瘤样本(PT)、1个邻近非肿瘤样本(NT)和6个转移样本(M)

  • 转移样本包括 2个肝脏转移样本(Li)、2个淋巴结转移样本(LN)、1个腹膜转移样本(P)和1个卵巢转移样本(O)

主要分析结果:

单细胞数据来自6名患者的10个新鲜人体组织样本,包括3个原发性肿瘤样本(PT)、1个邻近非肿瘤样本(NT)和6个转移样本(M)

图片

经过质量过滤,共检测到42 968个细胞,在降维和无监督细胞聚类之后,鉴定出七个细胞亚群:

  • 上皮细胞(1743;EPCAM, KRT19, CLDN4)

  • 基质(1288;PECAM1, CLO1A2, VWF)

  • 增生细胞(1089;Mki67, stmn1, pcna)

  • T细胞 (24 448;Cd3d, cd3e, cd2)

  • B细胞 (7708;CD79A, IGHG1, MS4A1)

  • NK细胞(NK, 1173;KLRD1, GNLY, KLRF1)

  • 髓系(5519;CSF1R、CSF3R、CD68)

图片

在不同的原发肿瘤和转移瘤中,每种细胞系的比例差异很大,揭示了一种异质性的细胞状态。

图片

恶性与非恶性上皮细胞分析通过特定的恶性和非恶性评分,系统定义了1615个恶性上皮细胞和128个非恶性上皮细胞,分析发现其中83%的非恶性上皮细胞来源于非肿瘤样本(NT)

图片

seeksoul云平台分析复现

学完了1.5d的课程后,这位同学已经可以输出以下内容啦,其实很多复现的内容相差无几,甚至图片要比原文更加美观~

具体分析方法可参考一文学会零代码单细胞分析推文,或者根据对应的视频讲解学习

1.数据上传及分析

使用云平台分析

首先是将下载整理好的原始数据上传到云平台,选择数据上传——单样品数据——matrix矩阵格式,然后上传对应的三个文件即可

图片

上传好数据后,选择需要进行分析的数据,点击快速创建流程,填写好需要的信息,即可上传数据进行分析,可以再已选数据中整理需要的分组信息

图片

图片

然后就是初始化数据,会统计nferture、ncount以及mito线粒体基因占比,然后进行过滤、整合等基本分析流程即可

图片

细胞注释:使用是0.5的分辨率,基于singleR自动注释+AI注释,结果较为准确

0.5分辨率

0.5分辨率

Figure1C

Figure1C

注释结果

注释结果

当运行完基础分析,以及进行细胞注释之后,可以使用画图工具,基于需要展示的分组信息进行可视化

画图工具使用

打开画图工具之后,可以使用右下角的添加图组——添加一块新的画布,比如新建一个新的tsne结果,用于展示文献的Figure1B

图片

添加好图组之后,在打开图组的情况下,选择添加模块,即可新建新的图表,可以展示的图表类型有小提琴图、降维图、FeaturePlot、Dotplot、分组统计图以及热图

图片

文献中的figure1B就是展示了不同分组的tsne结果,所以我们在图组里面选择需要的分组进行展示即可

图片

Figure1B

Figure1B

复现结果

复现结果

top基因集热图展示

图片

细胞比例图

图片

文献中是汇总了两个分组的细胞比例堆叠柱状图,所以可以选择不同的分组进行展示

Figure1F

Figure1F

添加模块之后,选择分组统计图进行展示,这时候要注意选择分组因子为celltype的注释信息,拆分因子为需要展示分组信息

图片

图片

差异富集分析

在差异富集分析选项中,可以选择全部的细胞亚群作为细胞分组,在比较组合里面可以选择需要的分组信息,这边选择是PT、NT以及转移M的分组

图片

选择全部细胞亚群进行分组,会依次基于B细胞亚群,在PT和NT之间的差异,PT和M之间的差异,选择好需要的分组信息

图片

选择展示哪一群就会高亮哪一群,可以使用火山图等展示差异基因

图片

图片

图片

图片

高级分析系列

在seeksoul云平台上面提供了很多可供选择的高级分析系列,比如拟时序分析,可以选择moncle3或者monocle2,还有infercnv分析和copyKAT分析

图片

在FAQ帮助文档里面有详细的介绍

图片

infercnv分析

尝试了使用infercnv去分析上皮细胞,选择的是B细胞和mast细胞作为参考,提交后15分钟完成了分析,速度较快

图片

分析完后,提供了可以下载的分析报告

图片

结果中有完整的分析结果报告的html文档

图片

图片

高级分析可选择内容较多,就没有一一尝试啦,但整体分析耗时较少,可供选择内容较多,对分析有很大的帮助

Seeksoul 单细胞平台使用感受

  1. 整体而言分析较为简便快捷,上传好数据之后,创建好对应的分析项目,然后进行分析即可

  2. 提供多种可以选择的高级分析,在差异富集分析选项中,能很方便的选择需要的细胞亚群以及分组信息进行比较

  3. 在画图工具里面,可以基于不同的分组信息进行可视化,对应到seurat分析中的group.by和split.by参数

  4. 除了基础的降维聚类分群注释分析功能外,还有很多高级分析系列,一个分析提供了不同版本和软件的选择,可以多运行选择需要的结果

整体而言对于新手较为友好,配色选择也很合适,能不使用代码就完成分析,对于新手而言非常nice!

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性号以及涉及时频局部化的问题。在号处理领域,FRFT尤其适用于分析非平稳号,例如在雷达、声纳和通系统中,对线性调频(Linear Frequency Modulation, LFM)号的分析具有显著优势。LFM号是一种频率随时间线性变化的号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通系统。FRFT能够更精准地捕捉LFM号的时间和频率息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在号处理中的应用。FRFT的正确性验证通常通过对比变换前后号的特性来完成,比如评估号的重构质量、噪比等。具体而言,可以通过计算原始号与经过FRFT处理后的号之间的相似度,或者对比LFM号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,成LFM号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值