写在前面
当今基因测序数据量在爆炸性增加,生信分析面临着算力要求高、代码软件繁多、科研人员协作分析困难等一系列痛点。为解决这些问题,各种生信云平台应运而生,它提供了一系列生物信息学工具和资源,用于支持科研人员在生物学数据的分析、可视化和解释方面的需求。SeekSoul Online便是其中一个,相信对于想要快速上手单细胞数据分析的你来说会是个惊喜:
使用教程可见:
文章介绍
复现文章标题:《Revealing the transcriptional heterogeneity of organ‐specific metastasis in human gastric cancer using single‐cell RNA Sequencing》
复现集锦:
发表日期和杂志:2022年发表在Clinical and Translational Medicine上
在线阅读链接:https://doi.org/10.1002/ctm2.730
单细胞实验设计:使用了单细胞RNA测序技术评估了来自6名患者的10个新鲜人体组织样本,共计42,968个细胞。
数据链接是:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163558
样品详情:
-
来自6名患者的10个新鲜人体组织样本,包括3个原发性肿瘤样本(PT)、1个邻近非肿瘤样本(NT)和6个转移样本(M)
-
转移样本包括 2个肝脏转移样本(Li)、2个淋巴结转移样本(LN)、1个腹膜转移样本(P)和1个卵巢转移样本(O)
主要分析结果:
单细胞数据来自6名患者的10个新鲜人体组织样本,包括3个原发性肿瘤样本(PT)、1个邻近非肿瘤样本(NT)和6个转移样本(M)
经过质量过滤,共检测到42 968个细胞,在降维和无监督细胞聚类之后,鉴定出七个细胞亚群:
-
上皮细胞(1743;EPCAM, KRT19, CLDN4)
-
基质(1288;PECAM1, CLO1A2, VWF)
-
增生细胞(1089;Mki67, stmn1, pcna)
-
T细胞 (24 448;Cd3d, cd3e, cd2)
-
B细胞 (7708;CD79A, IGHG1, MS4A1)
-
NK细胞(NK, 1173;KLRD1, GNLY, KLRF1)
-
髓系(5519;CSF1R、CSF3R、CD68)
在不同的原发肿瘤和转移瘤中,每种细胞系的比例差异很大,揭示了一种异质性的细胞状态。
恶性与非恶性上皮细胞分析通过特定的恶性和非恶性评分,系统定义了1615个恶性上皮细胞和128个非恶性上皮细胞,分析发现其中83%的非恶性上皮细胞来源于非肿瘤样本(NT)
seeksoul云平台分析复现
学完了1.5d的课程后,这位同学已经可以输出以下内容啦,其实很多复现的内容相差无几,甚至图片要比原文更加美观~
具体分析方法可参考一文学会零代码单细胞分析推文,或者根据对应的视频讲解学习
1.数据上传及分析
使用云平台分析
首先是将下载整理好的原始数据上传到云平台,选择数据上传——单样品数据——matrix矩阵格式,然后上传对应的三个文件即可
上传好数据后,选择需要进行分析的数据,点击快速创建流程,填写好需要的信息,即可上传数据进行分析,可以再已选数据中整理需要的分组信息
然后就是初始化数据,会统计nferture、ncount以及mito线粒体基因占比
,然后进行过滤、整合等基本分析流程即可
细胞注释:使用是0.5的分辨率,基于singleR自动注释+AI注释,结果较为准确
0.5分辨率
Figure1C
注释结果
当运行完基础分析,以及进行细胞注释之后,可以使用画图工具,基于需要展示的分组信息进行可视化
画图工具使用
打开画图工具之后,可以使用右下角的添加图组——添加一块新的画布,比如新建一个新的tsne结果,用于展示文献的Figure1B
添加好图组之后,在打开图组的情况下,选择添加模块
,即可新建新的图表,可以展示的图表类型有小提琴图、降维图、FeaturePlot、Dotplot、分组统计图以及热图
文献中的figure1B就是展示了不同分组的tsne结果,所以我们在图组里面选择需要的分组进行展示即可
Figure1B
复现结果
top基因集热图展示
细胞比例图
文献中是汇总了两个分组的细胞比例堆叠柱状图,所以可以选择不同的分组进行展示
Figure1F
添加模块之后,选择分组统计图进行展示,这时候要注意选择分组因子为celltype的注释信息,拆分因子为需要展示分组信息
差异富集分析
在差异富集分析选项中,可以选择全部的细胞亚群作为细胞分组,在比较组合里面可以选择需要的分组信息,这边选择是PT、NT以及转移M的分组
选择全部细胞亚群进行分组,会依次基于B细胞亚群,在PT和NT之间的差异,PT和M之间的差异,选择好需要的分组信息
选择展示哪一群就会高亮哪一群,可以使用火山图等展示差异基因
高级分析系列
在seeksoul云平台上面提供了很多可供选择的高级分析系列,比如拟时序分析,可以选择moncle3或者monocle2,还有infercnv分析和copyKAT分析
在FAQ帮助文档里面有详细的介绍
infercnv分析
尝试了使用infercnv去分析上皮细胞,选择的是B细胞和mast细胞作为参考,提交后15分钟完成了分析,速度较快
分析完后,提供了可以下载的分析报告
结果中有完整的分析结果报告的html文档
高级分析可选择内容较多,就没有一一尝试啦,但整体分析耗时较少,可供选择内容较多,对分析有很大的帮助
Seeksoul 单细胞平台使用感受
-
整体而言分析较为简便快捷,上传好数据之后,创建好对应的分析项目,然后进行分析即可
-
提供多种可以选择的高级分析,在差异富集分析选项中,能很方便的选择需要的细胞亚群以及分组信息进行比较
-
在画图工具里面,可以基于不同的分组信息进行可视化,对应到seurat分析中的group.by和split.by参数
-
除了基础的降维聚类分群注释分析功能外,还有很多高级分析系列,一个分析提供了不同版本和软件的选择,可以多运行选择需要的结果
整体而言对于新手较为友好,配色选择也很合适,能不使用代码就完成分析,对于新手而言非常nice!